Terahertz modulators play a critical role in high-speed wireless communication,non-destructive imaging,and so on,which have attracted a large amount of research interest.Nevertheless,all-optical terahertz modulation,a...Terahertz modulators play a critical role in high-speed wireless communication,non-destructive imaging,and so on,which have attracted a large amount of research interest.Nevertheless,all-optical terahertz modulation,an ultrafast dynamical control approach,remains to be limited in terms of encoding and multifunction.Here we experimentally demonstrated an optical-programmed terahertz switching realized by combining optical metasurfaces with the terahertz metasurface,resulting in 2-bit dual-channel terahertz encoding.The terahertz metasurface,made up of semiconductor islands and artificial microstructures,enables effective all-optical programming by providing multiple frequency channels with ultrafast modulation at the nanosecond level.Meanwhile,optical metasurfaces covered in terahertz metasurface alter the spatial light field distribution to obtain color code.According to the time-domain coupled mode theory analysis,the energy dissipation modes in terahertz metasurface can be independently controlled by color excitation,which explains the principle of 2-bit encoding well.This work establishes a platform for all-optical programmed terahertz metadevices and may further advance the application of composite metasurface in terahertz manipulation.展开更多
Due to the unique anisotropic chemical and physical properties,two-dimensional(2D)layered materials such as IV-VI monochalcogenides with puckered honeycomb structure,have received considerable interest recently.Among ...Due to the unique anisotropic chemical and physical properties,two-dimensional(2D)layered materials such as IV-VI monochalcogenides with puckered honeycomb structure,have received considerable interest recently.Among the IV-VI layered MX(M=Ge,Sn;X=Se,S)compounds,germanium sulfide(Ge S)stands out for its strongest anisotropic thermal conductivities and figure-of-merit values.Additionally,the layer-independent direct energy bands(Eg^1.6 e V,E1~2.1 e V)of Ge S flake provide excellent insights into further applications as visible photodetectors.Herein,the polarization-tunable nonlinear absorption(NA)patterns of Ge S flake have been systematically investigated.Specifically both the polarization-dependent Raman spectroscopy and the linear absorption(LA)spectroscopy were employed to characterize the lattice orientation and absorption edges of the251-nm Ge S flake.Considering the low damage threshold of Ge S flake,the Ge S/graphene heterostructure was fabricated to increase the threshold without changing the nonlinear properties of Ge S.Our NA results demonstrated that a 600-nm femtosecond laser with different polarizations would excite the saturated-absorption(SA)effect along armchair and reversesaturated-absorption(RSA)effect along zigzag in the Ge S/graphene heterostructure.Moreover,the function of the polarization-based Ge S/graphene heterostructure all-optical switch was experimentally verified.Notably,thanks to the polarization-dependent NA patterns(SA/RSA)of Ge S,the"ON"and"OFF"states of the all-optical switch can be accomplished by high and low transmittance states of continuous-wave laser(532 nm,80 n W),whose state can be controlled by the polarization of femtosecond switching laser(600 nm,35 fs,500 Hz,12 GW cm-2).The ON/OFF ratio can achieve up to 17%by changing polarization,compared with the ratios of 3.0%by increasing the incident power of switching light in our experiment.The polarization-tunable absorption patterns introduced in this work open up real perspectives for the next-generation optoelectronic devices based on Ge S/graphene heterostructure.展开更多
Terahertz metasurfaces have great applications for efficient terahertz modulation, but there are still problems in designing terahertz metadevices in terms of complexity and inefficiency. Herein, we demonstrate an inv...Terahertz metasurfaces have great applications for efficient terahertz modulation, but there are still problems in designing terahertz metadevices in terms of complexity and inefficiency. Herein, we demonstrate an inversely-designed terahertz metasurface with double electromagnetically induced transparency(EIT)-like windows by incorporating a particle swarm optimization(PSO) algorithm with the finite-difference time-domain method. We prepared and tested the metadevices, and the experimental terahertz signals are close to the designed results. By hybridizing amorphous germanium film with the inversely-designed metasurface, two EIT-like windows, including transmission and slow-light effect, exhibit ultrafast modulation behavior in 25 ps excited by a femtosecond laser. The modulation depths of transmission in two transparency windows are 74% and 65%, respectively. The numerical simulations also illustrate the ultrafast dynamic process and modulation mechanism, which match well with the experiment results. Our work thus offers opportunities for designing other objective functions of the terahertz metadevice.展开更多
基金the National Natural Science Foundation of China(62075240,62305384)the National Key Research and Development Program of China(2020YFB2205800)the Youth Innovation Talent Incubation Foundation of National University of Defense Technology(2023-lxy-fhij-007).
文摘Terahertz modulators play a critical role in high-speed wireless communication,non-destructive imaging,and so on,which have attracted a large amount of research interest.Nevertheless,all-optical terahertz modulation,an ultrafast dynamical control approach,remains to be limited in terms of encoding and multifunction.Here we experimentally demonstrated an optical-programmed terahertz switching realized by combining optical metasurfaces with the terahertz metasurface,resulting in 2-bit dual-channel terahertz encoding.The terahertz metasurface,made up of semiconductor islands and artificial microstructures,enables effective all-optical programming by providing multiple frequency channels with ultrafast modulation at the nanosecond level.Meanwhile,optical metasurfaces covered in terahertz metasurface alter the spatial light field distribution to obtain color code.According to the time-domain coupled mode theory analysis,the energy dissipation modes in terahertz metasurface can be independently controlled by color excitation,which explains the principle of 2-bit encoding well.This work establishes a platform for all-optical programmed terahertz metadevices and may further advance the application of composite metasurface in terahertz manipulation.
基金financial support from the National Natural Science Foundation of China(11802339,11805276,61805282,61801498,11804387,and 11902358)the Scientific Researches Foundation of National University of Defense Technology(ZK16-03-59,ZK18-01-03,ZK18-03-36,and ZK18-03-22)+4 种基金the Natural Science Foundation of Hunan province(2016JJ1021)the Open Director Fund of State Key Laboratory of Pulsed Power Laser Technology(SKL2018ZR05)the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology(GNJGJS03)the Opening Foundation of State Key Laboratory of Laser Interaction with Matter(SKLLIM1702)the Youth Talent Lifting Project(17-JCJQ-QT004)。
文摘Due to the unique anisotropic chemical and physical properties,two-dimensional(2D)layered materials such as IV-VI monochalcogenides with puckered honeycomb structure,have received considerable interest recently.Among the IV-VI layered MX(M=Ge,Sn;X=Se,S)compounds,germanium sulfide(Ge S)stands out for its strongest anisotropic thermal conductivities and figure-of-merit values.Additionally,the layer-independent direct energy bands(Eg^1.6 e V,E1~2.1 e V)of Ge S flake provide excellent insights into further applications as visible photodetectors.Herein,the polarization-tunable nonlinear absorption(NA)patterns of Ge S flake have been systematically investigated.Specifically both the polarization-dependent Raman spectroscopy and the linear absorption(LA)spectroscopy were employed to characterize the lattice orientation and absorption edges of the251-nm Ge S flake.Considering the low damage threshold of Ge S flake,the Ge S/graphene heterostructure was fabricated to increase the threshold without changing the nonlinear properties of Ge S.Our NA results demonstrated that a 600-nm femtosecond laser with different polarizations would excite the saturated-absorption(SA)effect along armchair and reversesaturated-absorption(RSA)effect along zigzag in the Ge S/graphene heterostructure.Moreover,the function of the polarization-based Ge S/graphene heterostructure all-optical switch was experimentally verified.Notably,thanks to the polarization-dependent NA patterns(SA/RSA)of Ge S,the"ON"and"OFF"states of the all-optical switch can be accomplished by high and low transmittance states of continuous-wave laser(532 nm,80 n W),whose state can be controlled by the polarization of femtosecond switching laser(600 nm,35 fs,500 Hz,12 GW cm-2).The ON/OFF ratio can achieve up to 17%by changing polarization,compared with the ratios of 3.0%by increasing the incident power of switching light in our experiment.The polarization-tunable absorption patterns introduced in this work open up real perspectives for the next-generation optoelectronic devices based on Ge S/graphene heterostructure.
基金supported by the National Natural Science Foundation of China (No. 62075240)the National Key Research and Development Program of China (No. 2020YFB2205800)。
文摘Terahertz metasurfaces have great applications for efficient terahertz modulation, but there are still problems in designing terahertz metadevices in terms of complexity and inefficiency. Herein, we demonstrate an inversely-designed terahertz metasurface with double electromagnetically induced transparency(EIT)-like windows by incorporating a particle swarm optimization(PSO) algorithm with the finite-difference time-domain method. We prepared and tested the metadevices, and the experimental terahertz signals are close to the designed results. By hybridizing amorphous germanium film with the inversely-designed metasurface, two EIT-like windows, including transmission and slow-light effect, exhibit ultrafast modulation behavior in 25 ps excited by a femtosecond laser. The modulation depths of transmission in two transparency windows are 74% and 65%, respectively. The numerical simulations also illustrate the ultrafast dynamic process and modulation mechanism, which match well with the experiment results. Our work thus offers opportunities for designing other objective functions of the terahertz metadevice.