Objective:To investigate the radio-sensitizing effect of salicylic acid(SA)on human cervical cancer cells and its potential molecular mechanism.Methods:Cervical cancer cells were treated with SA and ionizing radiation...Objective:To investigate the radio-sensitizing effect of salicylic acid(SA)on human cervical cancer cells and its potential molecular mechanism.Methods:Cervical cancer cells were treated with SA and ionizing radiation.The expression ofγ-H2AX was evaluated by immunofluorescence(IF)assay.Cell cycle and apoptosis were analyzed by flow cytometry.Western blot was performed to detect the protein level of AMPK/TSC2/mTOR pathway.Results:SA inhibited basal proliferation of cervical cancer cells in a dose and time dependent manner.In addition,SA increased radiation-induced DNA damage,promoted apoptosis,triggered a redistribution of cell cycle from G2-M phase to G1-S phase of cervical cancer cells,and hence increased cell sensitivity to radiation.Moreover,SA treatment elevated the expression levels of p-AMPKα(t=3.996,P<0.05)and p-TSC2(t=5.308,P<0.05),whereas the level of p-mTOR(t=10.160,P<0.05)was significantly decreased.Conclusion:SA enhances the radiosensitivity of cervical cancer cells by targeting AMPK/TSC2/mTOR signaling pathway,and might serve as a promising therapeutic strategy to improve the efficacy of radiotherapy for cervical cancer.展开更多
基金This work was supported by Research Project of Science and Technology Department of Sichuan Province,China(No.2020YFH0168.2020YJ0459 and 2021YFH0138).
文摘Objective:To investigate the radio-sensitizing effect of salicylic acid(SA)on human cervical cancer cells and its potential molecular mechanism.Methods:Cervical cancer cells were treated with SA and ionizing radiation.The expression ofγ-H2AX was evaluated by immunofluorescence(IF)assay.Cell cycle and apoptosis were analyzed by flow cytometry.Western blot was performed to detect the protein level of AMPK/TSC2/mTOR pathway.Results:SA inhibited basal proliferation of cervical cancer cells in a dose and time dependent manner.In addition,SA increased radiation-induced DNA damage,promoted apoptosis,triggered a redistribution of cell cycle from G2-M phase to G1-S phase of cervical cancer cells,and hence increased cell sensitivity to radiation.Moreover,SA treatment elevated the expression levels of p-AMPKα(t=3.996,P<0.05)and p-TSC2(t=5.308,P<0.05),whereas the level of p-mTOR(t=10.160,P<0.05)was significantly decreased.Conclusion:SA enhances the radiosensitivity of cervical cancer cells by targeting AMPK/TSC2/mTOR signaling pathway,and might serve as a promising therapeutic strategy to improve the efficacy of radiotherapy for cervical cancer.