The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal proper...The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal properties remains challenging due to a lack of suitable design ideas.Here,two new photothermal cocrystals,MTC and MFC,based on acceptor molecules(TCNQ and F4TCNQ)with different electron-withdrawing capacities were quickly prepared by the coprecipitation method,aiming to explore the effect of charge transfer(CT)interaction on photothermal properties.Compared with MTC,the stronger intermolecular CT interaction in MFC facilitates extending the absorption range(from the NIR-I to the NIR-II region)and enhancing the non-radiative transition process.Under the 808 nm laser irradiation,the photothermal conversion efficiency(PCE)of MFC is 54.6%,whereas MTC displays a mere 36.8%.The MFC cocrystal was further combined with a flexible polymer substrate(HPDMS)to prepare a flexible wearable heater(HPDMS@MFC),which exhibits excellent NIR-II photothermal performance.This work points out a research direction for the rapid assembly of efficient photothermal cocrystals and additionally provides an extensive application prospect for organic photothermal cocrystals in the field of wearable devices.展开更多
基金supported by the Ministry of Science and Technology of China (2022YFA1204401)the National Natural Science Foundation of China (52121002 and U21A6002)Tianjin Natural Science Foundation (20JCJQJC00300)。
基金the National Key R&D Program(2022YFB3603800)the National Natural Science Foundation of China(52121002,U21A6002)+1 种基金Tianjin Natural Science Foundation(20JCJQJC00300)the Fundamental ResearchFunds forthe Central Universities.
文摘The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal properties remains challenging due to a lack of suitable design ideas.Here,two new photothermal cocrystals,MTC and MFC,based on acceptor molecules(TCNQ and F4TCNQ)with different electron-withdrawing capacities were quickly prepared by the coprecipitation method,aiming to explore the effect of charge transfer(CT)interaction on photothermal properties.Compared with MTC,the stronger intermolecular CT interaction in MFC facilitates extending the absorption range(from the NIR-I to the NIR-II region)and enhancing the non-radiative transition process.Under the 808 nm laser irradiation,the photothermal conversion efficiency(PCE)of MFC is 54.6%,whereas MTC displays a mere 36.8%.The MFC cocrystal was further combined with a flexible polymer substrate(HPDMS)to prepare a flexible wearable heater(HPDMS@MFC),which exhibits excellent NIR-II photothermal performance.This work points out a research direction for the rapid assembly of efficient photothermal cocrystals and additionally provides an extensive application prospect for organic photothermal cocrystals in the field of wearable devices.