期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Quantitative lithium substitution of carboxyl hydrogens in polyacrylic acid binder enables robust SiO electrodes with durable lithium storage stability
1
作者 Weihua Wang Wenyi Li +7 位作者 siyi jing Huiping Yang Huiqun Wang Ling Huang Yuxiang Mao Xikun Pang Yudai Huang Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期352-360,I0007,共10页
The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH g... The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level. 展开更多
关键词 Polyacrylic acid binder SiO anode Quantitative lithium substitution Charge repulsion effect Adhesion strength
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部