The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for ap...The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for application in processes,such as etching and ashing.A uniform plasma can be obtained by allowing the remote plasma from the upper chamber modulate the main plasma generated in the lower chamber.In this study,a fluid model was employed to investigate a dual cylindrical inductively coupled Ar/O_(2)discharge.The effects of external parameters on electron density,electron temperature,O atomic density,and plasma uniformity in the main chamber were studied,and the reasons were analyzed.The results of this study show that remote power can control the plasma uniformity and increase the plasma density in the main chamber.As the remote power increased,plasma uniformity improved initially and then deteriorated.The main power affected the plasma density at the edge of the main chamber and can modulate the plasma density in the main chamber.The gas pressure affected both the uniformity and density of the plasma.As the gas pressure increased,the plasma uniformity deteriorated,but the free radical density improved.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.12075049 and 11935005)。
文摘The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for application in processes,such as etching and ashing.A uniform plasma can be obtained by allowing the remote plasma from the upper chamber modulate the main plasma generated in the lower chamber.In this study,a fluid model was employed to investigate a dual cylindrical inductively coupled Ar/O_(2)discharge.The effects of external parameters on electron density,electron temperature,O atomic density,and plasma uniformity in the main chamber were studied,and the reasons were analyzed.The results of this study show that remote power can control the plasma uniformity and increase the plasma density in the main chamber.As the remote power increased,plasma uniformity improved initially and then deteriorated.The main power affected the plasma density at the edge of the main chamber and can modulate the plasma density in the main chamber.The gas pressure affected both the uniformity and density of the plasma.As the gas pressure increased,the plasma uniformity deteriorated,but the free radical density improved.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.