The increasing demand for wastewater treatment has become a notable trend for addressing global water scarcity.However,fouling is a significant challenge for wastewater distribution engineering systems.This study prov...The increasing demand for wastewater treatment has become a notable trend for addressing global water scarcity.However,fouling is a significant challenge for wastewater distribution engineering systems.This study provides an approach using nanobubbles(NBs)to control fouling.The antifouling capacities of three types of NBs,six oxygen concentrations,and two application procedures(prevention and removal)are investigated.The results show that NBs effectively mitigate composite fouling—including biofouling,inorganic scaling,and particulate fouling—in comparison with the non-NBs group.More specifically,hydroxyl radicals generated by the self-collapse of NBs oxidize organics and kill microorganisms in wastewater.The negatively charged surfaces of the NBs transform the crystalline form of CaCO_(3)from calcite to looser aragonite,which reduces the likelihood of ion precipitation.Furthermore,the NBs gas-liquid interfaces act as gas"bridges"between colloidal particles,enhancing the removal of particles from wastewater.Lastly,although the NBs inhibit the growth of fouling,they do not significantly remove the already adhered fouling in non-NBs treated groups.This study anticipates that the application of NBs will address the significant fouling issue for various wastewater distribution engineering systems in order to meet the global challenge of sustainable water supplies.展开更多
基金support for this research was provided by the National Natural Science Foundation of China(52339004 and 52209074)Natural Science Foundation of Shandong Province(ZR2022QE079),National Key Research and Development Plan(2021YFD1900900)+3 种基金the earmarked fund for CARS-03,and the China Post-doctoral Science Foundation(BX2021363 and 2022M713394)Sunny C.Jiang was supported by US National Science Foundation(CBET 2027306,CBET 2128480,and CBET 1806066)US Bureau of Reclamation(R21AC10079-00)US Environmental Protection Agency(EPA-G2021-STAR-A1 and 84025701).
文摘The increasing demand for wastewater treatment has become a notable trend for addressing global water scarcity.However,fouling is a significant challenge for wastewater distribution engineering systems.This study provides an approach using nanobubbles(NBs)to control fouling.The antifouling capacities of three types of NBs,six oxygen concentrations,and two application procedures(prevention and removal)are investigated.The results show that NBs effectively mitigate composite fouling—including biofouling,inorganic scaling,and particulate fouling—in comparison with the non-NBs group.More specifically,hydroxyl radicals generated by the self-collapse of NBs oxidize organics and kill microorganisms in wastewater.The negatively charged surfaces of the NBs transform the crystalline form of CaCO_(3)from calcite to looser aragonite,which reduces the likelihood of ion precipitation.Furthermore,the NBs gas-liquid interfaces act as gas"bridges"between colloidal particles,enhancing the removal of particles from wastewater.Lastly,although the NBs inhibit the growth of fouling,they do not significantly remove the already adhered fouling in non-NBs treated groups.This study anticipates that the application of NBs will address the significant fouling issue for various wastewater distribution engineering systems in order to meet the global challenge of sustainable water supplies.