Purpose: To establish normal values of sonographically-quantified visceral adipose tissue (VAT) in an African population and to correlate results with biomarkers. Patients and Methods: 100 male and 150 female voluntee...Purpose: To establish normal values of sonographically-quantified visceral adipose tissue (VAT) in an African population and to correlate results with biomarkers. Patients and Methods: 100 male and 150 female volunteers were scanned for intra-abdominal adipose tissue thickness. Other parameters obtained include BMI, WC, and blood pressure (BP). Pearson correlation coefficient (r) was used to estimate the degree of relationship in VAT, BMI, WC, and blood pressure. Results: The mean VAT thickness was 25.36 ± 16.42 mm. VAT correlated positively and linearly with age (r = 0.651;p < 0.05), BMI (males: r = 0.745, p < 0.05, and females: r = 0.736;p < 0.05), WC (males: r = 0.797, p < 0.05;females: r = 0.779, p < 0.05), and systolic and diastolic blood pressure. (Systolic: r = 0.524, p < 0.05, and diastolic: r = 0.535, p <0.05). Conclusion: Ultrasound is a useful tool in assessing VAT during routine scans to identify patients at risk of increased blood pressure and cardiac diseases associated with obesity.展开更多
Objective: The work aims to determine the radiographers’ preference between primary and secondary radiation fields for imprinting anatomical markers on radiographs. Methodology: Processed radiographs from the darkroo...Objective: The work aims to determine the radiographers’ preference between primary and secondary radiation fields for imprinting anatomical markers on radiographs. Methodology: Processed radiographs from the darkroom with evidence of radiographic anatomical markings were selected randomly and reviewed using a viewing box, within a 4-week period. The radiation field in which markers were placed was noted for each radiograph. Faintly-appearing and partly coned- off markers were excluded. Simple statistical tools were used to derive central tendency. Result: 623 radiographs were assessed. 89.0% (n = 555) had markers in the primary radiation field while 11.0% (n = 68) were in the secondary radiation field. 98% (n = 611) of markers did not obstruct essential anatomy while 2% (n = 12) did, but the radiographs were neither repeated nor rejected because of the twin reason of reportability and the need to avoid additional radiation dose to patients. Conclusion: Radiographers in the centre preferred the primary radiation field for marker placement to avoid cone-off, cut-off and illegibility which leads to repeat. This, however, does not offer superior advantage to markers placed in secondary radiation field. It is recommended that marker placement preference should be guided by the need for legibility, aesthetics and avoidance of essential anatomy.展开更多
文摘Purpose: To establish normal values of sonographically-quantified visceral adipose tissue (VAT) in an African population and to correlate results with biomarkers. Patients and Methods: 100 male and 150 female volunteers were scanned for intra-abdominal adipose tissue thickness. Other parameters obtained include BMI, WC, and blood pressure (BP). Pearson correlation coefficient (r) was used to estimate the degree of relationship in VAT, BMI, WC, and blood pressure. Results: The mean VAT thickness was 25.36 ± 16.42 mm. VAT correlated positively and linearly with age (r = 0.651;p < 0.05), BMI (males: r = 0.745, p < 0.05, and females: r = 0.736;p < 0.05), WC (males: r = 0.797, p < 0.05;females: r = 0.779, p < 0.05), and systolic and diastolic blood pressure. (Systolic: r = 0.524, p < 0.05, and diastolic: r = 0.535, p <0.05). Conclusion: Ultrasound is a useful tool in assessing VAT during routine scans to identify patients at risk of increased blood pressure and cardiac diseases associated with obesity.
文摘Objective: The work aims to determine the radiographers’ preference between primary and secondary radiation fields for imprinting anatomical markers on radiographs. Methodology: Processed radiographs from the darkroom with evidence of radiographic anatomical markings were selected randomly and reviewed using a viewing box, within a 4-week period. The radiation field in which markers were placed was noted for each radiograph. Faintly-appearing and partly coned- off markers were excluded. Simple statistical tools were used to derive central tendency. Result: 623 radiographs were assessed. 89.0% (n = 555) had markers in the primary radiation field while 11.0% (n = 68) were in the secondary radiation field. 98% (n = 611) of markers did not obstruct essential anatomy while 2% (n = 12) did, but the radiographs were neither repeated nor rejected because of the twin reason of reportability and the need to avoid additional radiation dose to patients. Conclusion: Radiographers in the centre preferred the primary radiation field for marker placement to avoid cone-off, cut-off and illegibility which leads to repeat. This, however, does not offer superior advantage to markers placed in secondary radiation field. It is recommended that marker placement preference should be guided by the need for legibility, aesthetics and avoidance of essential anatomy.