We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy l...We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy levels;such atoms are originally generated in a coherent superposition of two lower levels.The phaseonium system is comprised of three-level atoms with aΛ-type configuration,which are initially prepared in a coherent superposition of two lower levels.To accomplish this spatial modulation based on the susceptibility of phaseonium medium,a standingwave field is used.By looking at how an optical field diffracts at different relative phases,we find that the zeroth and first order diffraction intensities increase as the relative phase changes.We also investigate the impact of the Rabi frequency of the field on diffraction intensity and notice that an increasing strength of the Rabi frequency leads to amplification in the intensity of both central zeroth order and first-order diffraction.Furthermore,it has been observed that a significant rise in diffraction intensity occurs at longer interaction lengths between external fields and the atomic medium.展开更多
基金the financial support provided by Hubei University of Automotive Technology in the form of a startup research grant(BK202212)。
文摘We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy levels;such atoms are originally generated in a coherent superposition of two lower levels.The phaseonium system is comprised of three-level atoms with aΛ-type configuration,which are initially prepared in a coherent superposition of two lower levels.To accomplish this spatial modulation based on the susceptibility of phaseonium medium,a standingwave field is used.By looking at how an optical field diffracts at different relative phases,we find that the zeroth and first order diffraction intensities increase as the relative phase changes.We also investigate the impact of the Rabi frequency of the field on diffraction intensity and notice that an increasing strength of the Rabi frequency leads to amplification in the intensity of both central zeroth order and first-order diffraction.Furthermore,it has been observed that a significant rise in diffraction intensity occurs at longer interaction lengths between external fields and the atomic medium.