This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of...This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.展开更多
Valeo, involved in engine cooling fan system design for many years, is interested in noise prediction tools for axial fans. Thus, this paper describes a two-part study of tonal noise computation. The first part deals ...Valeo, involved in engine cooling fan system design for many years, is interested in noise prediction tools for axial fans. Thus, this paper describes a two-part study of tonal noise computation. The first part deals with the prediction of tonal noise using analytical models. As for the second part, it describes a hybrid approach for predicting tonal noise where the sources are extracted from an Unsteady Reynolds-Averaged Naviers-Stocks (URANS) simulation and then propagated into the far, free field using the Ffowcs Williams and Hawkings' acoustic analogy. The computational domain is meshed with 46 million polyhedral elements and the simulation takes into account the exact geometry of the rotor blades, the stator blades and the shroud. The results from the first part show that analytical models can be used for comparisons between different fan geometries, but are unable to provide accurate noise predictions compared to experimental results. The simulation shows non-periodic blade loading over a whole fan revolution, and different blade loading between the blades. This introduces some bias in the assessment of the acoustic performance of the fan. Overall, the results from the hybrid method are in accordance with the experimental results.展开更多
基金the Dyn Fluid Laboratory at Arts et Métiers Paris Tech
文摘This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.
文摘Valeo, involved in engine cooling fan system design for many years, is interested in noise prediction tools for axial fans. Thus, this paper describes a two-part study of tonal noise computation. The first part deals with the prediction of tonal noise using analytical models. As for the second part, it describes a hybrid approach for predicting tonal noise where the sources are extracted from an Unsteady Reynolds-Averaged Naviers-Stocks (URANS) simulation and then propagated into the far, free field using the Ffowcs Williams and Hawkings' acoustic analogy. The computational domain is meshed with 46 million polyhedral elements and the simulation takes into account the exact geometry of the rotor blades, the stator blades and the shroud. The results from the first part show that analytical models can be used for comparisons between different fan geometries, but are unable to provide accurate noise predictions compared to experimental results. The simulation shows non-periodic blade loading over a whole fan revolution, and different blade loading between the blades. This introduces some bias in the assessment of the acoustic performance of the fan. Overall, the results from the hybrid method are in accordance with the experimental results.