期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
LiFePO_(4) as a dual-functional coating for separators in lithium-ion batteries:A new strategy for improving capacity and safety
1
作者 Modeste Venin Mendieev Nitou Yashuai Pang +7 位作者 Zhao Wan Wenjun Li Zhuohang Zhong Waqas muhammad Saeed muhammad sohail muhammad Yinghua Niu Weiqiang Lv 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期490-498,I0010,共10页
Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefi... Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefin separators can enhance stability but comes at the cost of increased weight and decreased capacity of the battery.Herein,a novel separator coated with lithium iron phosphate(LFP),an active cathode material,is developed via a simple and scalable process.The LFP-coated separator exhibits superior thermal stability,mechanical strength,electrolyte wettability,and ionic conductivity than the conventional polyethylene(PE)separator.Moreover,the LFP coating can actively participate in the electrochemical reaction during the charge-discharge process,thus enhancing the capacity of the battery.The results show that the LFP-coated separator can increase the cell capacity by 26%,and improve the rate capability by 29%at 4 C compared with the conventional PE separator.The LFP-coated separator exhibits only 1.1%thermal shrinkage at 140°C,a temperature even above the melting point of PE.This work introduces a new strategy for designing separators with dual functions for the next-generation LIBs with improved performance and safety. 展开更多
关键词 Lithium-ion batteries SEPARATOR Surface-coating LiFePO_(4) SAFETY
下载PDF
Enhanced Li+migration in solid polymer electrolyte driven by anion-containing polymer-chains
2
作者 Xingyi Zhang Modeste Venin Mendieev Nitou +8 位作者 Wenjun Li Zhao Wan Longfei Liu Zhaohui Luo sohail muhammad Wu Qin Liang An Yinghua Niu Weiqiang Lv 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期342-345,共4页
Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+tran... Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+transport in SPEs at room temperature.Anion-containing polymer-chains incorporated SPEs(ASPEs)are therefore developed to enhance Li^(+) diffusion kinetics.Herein,we propose a novel and feasible strategy to incorporate the anion-containing polymer-chains,such as lithiated perfluorinated sulfonic acid(PFSA),into polyvinylidene fluoride(PVDF)polymer-based SPEs.The immobile anion groups from the PFSA-chains impede the migration of mobile anion groups dissociated from the Li salt.The transference number is thus raised from∼0.3 to 0.52 with the introduction of anion-containing polymer-chains into SPEs.The electrostatic repulsion among anion-containing chains also reduces the close chain stacking and brings 159%increase in the ionic conductivity to 0.83×10^(−3) S/cm at 30℃ in contrast with the pure PVDF-based SPE.In addition,LiFeO_(4)/Li batteries with ASPEs exhibit 55%capacity boost at 0.5 C in contrast to the capacity of batteries with pure-PVDF SPEs,and also offer more than 1000 charge/discharge cycles.Our research findings potentially offer a facile strategy to design thermal stable SPEs with superior Li^(+) transport behaviors towards developing high-performance SPEs-based batteries. 展开更多
关键词 Solid polymer electrolyte Lithiated perfluorinated sulfonic acid Polyvinylidene fluoride Solid-state battery Anion containing polymer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部