期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators 被引量:1
1
作者 sohrab gholamhosein pouryoussefi Masoud MIRZAEI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第5期415-424,共10页
The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuat... The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuators in quiescent air. The parameters affecting the operation of unsteady plasma actuators were experimentally measured and compared with the ones for steady actuators. The effects of excitation frequency and duty cycle on the induced flow pattern properties were studied by means of hot-wire anemometers, and the smoke visualization method was also used. It was observed that the current and the mean induced velocity linearly increase with increasing duty cycle while they are not sensitive to excitation frequency. Furthermore, with increasing excitation frequency, the magnitude of vortices shedding from the actuator decreases while their frequency increases. Nevertheless, when the excitation frequency grows beyond a certain level, the induced flow downstream of the actuator behaves as a steady flow. However, the results for steady actuators show that by increasing the applied voltage and carrier frequency, the velocity of the induced flow first increases and then decreases with actuator saturation and the onset of the emission of streaky glow discharge. 展开更多
关键词 unsteady plasma actuator excitation frequency duty cycle induced flowpattern frequency response sequence
下载PDF
Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil 被引量:13
2
作者 sohrab gholamhosein pouryoussefi Masoud Mirzaei +2 位作者 Mohammad-Mahdi Nazemi Mojtaba Fouladi Alireza Doostmahmoudi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期585-595,共11页
In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Exper- iments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 x 10^6 over an... In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Exper- iments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 x 10^6 over angles of attack from -8° to 20% and then results are compared. Gener- ally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10^6 and the maximum lift coefficient reduces about 50% which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4°and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2% and the maximum lift reduces about 8%. 展开更多
关键词 Airfoil icing Aviation accidents:Horn ice NACA 23012 airfoilRunback ice Separation bobble Spanwise ridge ice
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部