Nanocrystalline Zn1-x CoxO(where x varies from 0 to 0.04 in steps of 0.01) thin films were deposited onto glass substrate by the spray pyrolysis technique at a substrate temperature of 350 ℃. The X-ray diffraction ...Nanocrystalline Zn1-x CoxO(where x varies from 0 to 0.04 in steps of 0.01) thin films were deposited onto glass substrate by the spray pyrolysis technique at a substrate temperature of 350 ℃. The X-ray diffraction patterns confirm the formation of hexagonal wurtzite structure. The crystal grain size of these films was found to be in the range of 11–36 nm. The scanning electron micrographs show a highly crystalline nanostructure with different morphologies including rope-like morphology for undoped ZnO and nanowalls and semispherical morphology for Co-doped Zn O. The transmittance increases with increasing Co^2+ doping. The optical absorption edge is observed in the transmittance spectra from 530 to 692 nm, which is due to the Co2C absorption bands corresponding to intraionic d–d^* shifts. The direct and indirect optical band gap energies decrease from 3.05 to 2.75 eV and 3.18 to 3.00 eV, respectively for 4 mol% Co doping. The electrical conductivity increases with increasing both the Co doping and temperature, indicating the semiconducting nature of these films. The temperature dependence thermal electromotive force measurement indicates that both undoped and Co-doped ZnO thin films show p-type semiconducting behavior near room temperature. This behavior dies out beyond 313 K and they become n-type semiconductors.展开更多
文摘Nanocrystalline Zn1-x CoxO(where x varies from 0 to 0.04 in steps of 0.01) thin films were deposited onto glass substrate by the spray pyrolysis technique at a substrate temperature of 350 ℃. The X-ray diffraction patterns confirm the formation of hexagonal wurtzite structure. The crystal grain size of these films was found to be in the range of 11–36 nm. The scanning electron micrographs show a highly crystalline nanostructure with different morphologies including rope-like morphology for undoped ZnO and nanowalls and semispherical morphology for Co-doped Zn O. The transmittance increases with increasing Co^2+ doping. The optical absorption edge is observed in the transmittance spectra from 530 to 692 nm, which is due to the Co2C absorption bands corresponding to intraionic d–d^* shifts. The direct and indirect optical band gap energies decrease from 3.05 to 2.75 eV and 3.18 to 3.00 eV, respectively for 4 mol% Co doping. The electrical conductivity increases with increasing both the Co doping and temperature, indicating the semiconducting nature of these films. The temperature dependence thermal electromotive force measurement indicates that both undoped and Co-doped ZnO thin films show p-type semiconducting behavior near room temperature. This behavior dies out beyond 313 K and they become n-type semiconductors.