Humic substances(HS),which are defined as a series of highly acidic,relatively high-molecular-weight,and yellow to black colored substances formed during the decay and transformation of plant and microbial remains,ubi...Humic substances(HS),which are defined as a series of highly acidic,relatively high-molecular-weight,and yellow to black colored substances formed during the decay and transformation of plant and microbial remains,ubiquitously occur in nature.Humic substances represent the largest stable organic carbon pool in terrestrial environments and are the central characteristic of the soil.However,the validity of the HS concept and the justification of their extraction procedure have been recently debated.Here,we argue that the traditional humic paradigm is still relevant.Humic substances are distinctive and complex because the extracted HS formed during the humification are chemically distinct from their precursors and are heterogeneous among soils.By reviewing the concept,formation pathways,and stabilization of HS,we propose that the key question facing soil scientists is whether HS are soil microbial residues or unique synthesized compounds.Without revealing the distinctiveness of HS,it is impossible to address this question,as the structure,composition,and reactivity of HS are still poorly known owing to the heterogeneity and geographical variability of HS and the limits of the currently available analytical techniques.In our view,the distinctiveness of HS is fundamental to the soil,and thus further studies should be focused on revealing the distinctiveness of HS and explaining why HS hold this distinctiveness.展开更多
pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hyd...pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hydrophobicity at neutral condition, has been realized. The wettability properties resulted from the surface topological and chemical transition, which were confirmed by in situ AFM measurements under water at different pH. At low pH, P4VP chains, which were confined in the hexagonal-packed nanodomains, got protonated into a swollen state, while at high pH, P4VP chains were deprotonated into a collapsed state. The reversible protonation/deprotonation procedure on the molecular scale leads to surface topological and chemical transition, thereby pH-sensitive wettability.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41571231 and 41201221)the National Key Research and Development Program of China(No.2016YFD0200304)+3 种基金the Scientific Instrument and Equipment Development Project of Chinese Academy Sciences(CAS)(No.YJKYYQ20170058)the Natural Science Foundation of Jiangsu Province,China(No.BK2012496)the Youth Innovation Promotion Association,CAS(No.2017362)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB180010)。
文摘Humic substances(HS),which are defined as a series of highly acidic,relatively high-molecular-weight,and yellow to black colored substances formed during the decay and transformation of plant and microbial remains,ubiquitously occur in nature.Humic substances represent the largest stable organic carbon pool in terrestrial environments and are the central characteristic of the soil.However,the validity of the HS concept and the justification of their extraction procedure have been recently debated.Here,we argue that the traditional humic paradigm is still relevant.Humic substances are distinctive and complex because the extracted HS formed during the humification are chemically distinct from their precursors and are heterogeneous among soils.By reviewing the concept,formation pathways,and stabilization of HS,we propose that the key question facing soil scientists is whether HS are soil microbial residues or unique synthesized compounds.Without revealing the distinctiveness of HS,it is impossible to address this question,as the structure,composition,and reactivity of HS are still poorly known owing to the heterogeneity and geographical variability of HS and the limits of the currently available analytical techniques.In our view,the distinctiveness of HS is fundamental to the soil,and thus further studies should be focused on revealing the distinctiveness of HS and explaining why HS hold this distinctiveness.
基金financially supported by the National Natural Science Foundation of China(No.21204002)Specialized Research Fund for the Doctoral Program of Higher Education(No.20111102120050)+1 种基金Program for New Century Excellent Talents in Universities(2010)the Fundamental Research Funds for the Central Universities
文摘pH-sensitive wettability of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) self assembled films, exhibiting superoleophobicity under water and hydrophilicity at low pH value, and oleophobicity under water and hydrophobicity at neutral condition, has been realized. The wettability properties resulted from the surface topological and chemical transition, which were confirmed by in situ AFM measurements under water at different pH. At low pH, P4VP chains, which were confined in the hexagonal-packed nanodomains, got protonated into a swollen state, while at high pH, P4VP chains were deprotonated into a collapsed state. The reversible protonation/deprotonation procedure on the molecular scale leads to surface topological and chemical transition, thereby pH-sensitive wettability.