In order to improve the accuracy of detecting the new P2P(peer-to-peer)botnet,a novel P2P botnet detection method based on the network behavior features and Dezert-Smarandache theory is proposed.It focuses on the netw...In order to improve the accuracy of detecting the new P2P(peer-to-peer)botnet,a novel P2P botnet detection method based on the network behavior features and Dezert-Smarandache theory is proposed.It focuses on the network behavior features,which are the essential abnormal features of the P2P botnet and do not change with the network topology,the network protocol or the network attack type launched by the P2P botnet.First,the network behavior features are accurately described by the local singularity and the information entropy theory.Then,two detection results are acquired by using the Kalman filter to detect the anomalies of the above two features.Finally,the above two detection results are fused with the Dezert-Smarandache theory to obtain the final detection results.The experimental results demonstrate that the proposed method can effectively detect the new P2P botnet and that it considerably outperforms other methods at a lower degree of false negative rate and false positive rate,and the false negative rate and the false positive rate can reach 0.09 and 0.12,respectively.展开更多
Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which...Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which reflect not the "unique" abnormalities of P2P botnets but the "common" abnormalities of them.It regards network traffic as the signal,and synthetically considers the macroscopic characteristics of network under different time scales with the fractal theory,including the self-similarity and the local singularity,which don't vary with the topology structures,the protocols and the attack types of P2P botnet.At first detect traffic abnormalities of the above characteristics with the nonparametric CUSUM algorithm,and achieve the final result by fusing the above detection results with the Dempster-Shafer evidence theory.Moreover,the side effect on detecting P2P botnet which web applications generated is considered.The experiments show that DMFIF can detect P2P botnet with a higher degree of precision.展开更多
基金The National High Technology Research and Development Program of China(863 Program)(No.2011AA7031024G)the National Natural Science Foundation of China(No.61133011,61373053,61472161)
文摘In order to improve the accuracy of detecting the new P2P(peer-to-peer)botnet,a novel P2P botnet detection method based on the network behavior features and Dezert-Smarandache theory is proposed.It focuses on the network behavior features,which are the essential abnormal features of the P2P botnet and do not change with the network topology,the network protocol or the network attack type launched by the P2P botnet.First,the network behavior features are accurately described by the local singularity and the information entropy theory.Then,two detection results are acquired by using the Kalman filter to detect the anomalies of the above two features.Finally,the above two detection results are fused with the Dezert-Smarandache theory to obtain the final detection results.The experimental results demonstrate that the proposed method can effectively detect the new P2P botnet and that it considerably outperforms other methods at a lower degree of false negative rate and false positive rate,and the false negative rate and the false positive rate can reach 0.09 and 0.12,respectively.
基金supported by National High Technical Research and Development Program of China(863 Program)under Grant No.2011AA7031024GNational Natural Science Foundation of China under Grant No.90204014
文摘Towards the problems of existing detection methods,a novel real-time detection method(DMFIF) based on fractal and information fusion is proposed.It focuses on the intrinsic macroscopic characteristics of network,which reflect not the "unique" abnormalities of P2P botnets but the "common" abnormalities of them.It regards network traffic as the signal,and synthetically considers the macroscopic characteristics of network under different time scales with the fractal theory,including the self-similarity and the local singularity,which don't vary with the topology structures,the protocols and the attack types of P2P botnet.At first detect traffic abnormalities of the above characteristics with the nonparametric CUSUM algorithm,and achieve the final result by fusing the above detection results with the Dempster-Shafer evidence theory.Moreover,the side effect on detecting P2P botnet which web applications generated is considered.The experiments show that DMFIF can detect P2P botnet with a higher degree of precision.