High-precision CCD photometric observations of the contact binary V680 Per were obtained in2016.Its symmetric multi-color light curves were analyzed by using the Wilson–Devinney(2013)program.These photometric solutio...High-precision CCD photometric observations of the contact binary V680 Per were obtained in2016.Its symmetric multi-color light curves were analyzed by using the Wilson–Devinney(2013)program.These photometric solutions suggest that V680 Per is an A-type W UMa contact binary with the mass ratio of q=0.693 and a fill-out factor of f=18.84%with a small temperature difference of 101 K.Based on all minimum times,the O-C curve was analyzed for the first time in this study.A cyclic oscillation(A3=0.00093 d,T3=4.92 yr)superimposed on a secular decrease(d P/dt=-8.16×10-8 d yr-1)was identified.The continuous decrease in period is possibly a result of mass transfer from the more massive component to the less massive one,or angular momentum loss due to a magnetic stellar wind.Because of this secular decrease,it is predicted that the degree of contact will become higher,and V680 Per will evolve into a deeper overcontact binary.展开更多
基金supported by the Joint Research Found(Nos.U1831109 and U1631108)in Astronomy under cooperative agreement between the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)the Science Foundation of China University of Petroleum-Beijing at Karamay(Nos.RCYJ 2016B-03-004 and 2016B-03-006)Key Laboratory for the Structure and Evolution ofCelestial Objects,Chinese Academy of Sciences(No.OP201708)。
文摘High-precision CCD photometric observations of the contact binary V680 Per were obtained in2016.Its symmetric multi-color light curves were analyzed by using the Wilson–Devinney(2013)program.These photometric solutions suggest that V680 Per is an A-type W UMa contact binary with the mass ratio of q=0.693 and a fill-out factor of f=18.84%with a small temperature difference of 101 K.Based on all minimum times,the O-C curve was analyzed for the first time in this study.A cyclic oscillation(A3=0.00093 d,T3=4.92 yr)superimposed on a secular decrease(d P/dt=-8.16×10-8 d yr-1)was identified.The continuous decrease in period is possibly a result of mass transfer from the more massive component to the less massive one,or angular momentum loss due to a magnetic stellar wind.Because of this secular decrease,it is predicted that the degree of contact will become higher,and V680 Per will evolve into a deeper overcontact binary.