Size-based partitioning of phytoplankton is a useful tool for monitoring key phytoplankton traits, and it provides a better understanding of phytoplankton dynamics. Our aim is to determine the variation in the differe...Size-based partitioning of phytoplankton is a useful tool for monitoring key phytoplankton traits, and it provides a better understanding of phytoplankton dynamics. Our aim is to determine the variation in the different size classes of phytoplankton to the total phytoplankton biomass during the spring and autumn of 2010 and examine the relationship between phytoplankton size structure and environmental variables and zooplankton community structure near the Changjiang Estuary. In the spring, phytoplankton populations were predominantly consisted of nanophytoplankton throughout the study region. In the autumn, picophytoplankton and nanophytoplankton collectively dominated the phytoplankton community. A Pearson correlation analysis highlighted the role of temperature and trophic conditions on the contributions of nanophytoplankton and picophytoplankton. The grazing pressure exerted by mesozooplankton could have played an important role in determining the microphytoplankton community structure.展开更多
基金The National Basic Research Program(973 Program)of China under contract No.2010CB428702the Science and Technology Planning Project of Guangdong Province of China under contract No.2016A030303012the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020304
文摘Size-based partitioning of phytoplankton is a useful tool for monitoring key phytoplankton traits, and it provides a better understanding of phytoplankton dynamics. Our aim is to determine the variation in the different size classes of phytoplankton to the total phytoplankton biomass during the spring and autumn of 2010 and examine the relationship between phytoplankton size structure and environmental variables and zooplankton community structure near the Changjiang Estuary. In the spring, phytoplankton populations were predominantly consisted of nanophytoplankton throughout the study region. In the autumn, picophytoplankton and nanophytoplankton collectively dominated the phytoplankton community. A Pearson correlation analysis highlighted the role of temperature and trophic conditions on the contributions of nanophytoplankton and picophytoplankton. The grazing pressure exerted by mesozooplankton could have played an important role in determining the microphytoplankton community structure.