The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design...The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design of expanded graphite cohered by N,B bridge-doping carbon patches(NBEG)for efficient K-ion adsorption/diffusion and long-term durability.It is the B co-doping that plays a crucial role in maximizing doping-site utilization of N atoms,balancing the adsorption-diffusion kinetics,and promoting the charge transfer between NBEG and K ions.Especially,the robust lamellar structure,suitable interlayer distance,and rich active sites of the designed NBEG favor the rapid ion/electron transfer pathways and high K-ion storage capacity.Consequently,even at a low N,B doping concentration(4.36 at%,2.07 at%),NBEG anode shows prominent electrochemical performance for KIBs,surpassing most of the advanced carbon-based anodes.Kinetic studies,density functional theory simulations,and in-situ Raman spectroscopy are further performed to reveal the K-ion storage mechanism and confirm the critical actions of co-doping B.This work offers the new methods for graphite-electrode design and the deeper insights into their energy storage mechanisms in KIBs.展开更多
基金supported by the National Natural Science Foundation of China(21573059 and U1704251)the Overseas Expertise Introduction Project for Discipline Innovation(D17007)the Natural Science Foundation of Henan Province(212300410178)。
文摘The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design of expanded graphite cohered by N,B bridge-doping carbon patches(NBEG)for efficient K-ion adsorption/diffusion and long-term durability.It is the B co-doping that plays a crucial role in maximizing doping-site utilization of N atoms,balancing the adsorption-diffusion kinetics,and promoting the charge transfer between NBEG and K ions.Especially,the robust lamellar structure,suitable interlayer distance,and rich active sites of the designed NBEG favor the rapid ion/electron transfer pathways and high K-ion storage capacity.Consequently,even at a low N,B doping concentration(4.36 at%,2.07 at%),NBEG anode shows prominent electrochemical performance for KIBs,surpassing most of the advanced carbon-based anodes.Kinetic studies,density functional theory simulations,and in-situ Raman spectroscopy are further performed to reveal the K-ion storage mechanism and confirm the critical actions of co-doping B.This work offers the new methods for graphite-electrode design and the deeper insights into their energy storage mechanisms in KIBs.