Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons.Here we explored how gestational exposure to dexamethasone,a synthetic glucocorticoid commonly used in clinical practice,...The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons.Here we explored how gestational exposure to dexamethasone,a synthetic glucocorticoid commonly used in clinical practice,has lasting effects on offspring's learning and memory.Adult offspring rats of prenatal dexamethasone exposure(PDE)displayed significant impairments in novelty recognition and spatial learning memory,with some phenotypes maintained transgenerationally.PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations,and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory,but these changes failed to carry over to offspring of F5 and F7 generations.Mechanistically,altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission,which might be related to oocyte-specific high expression and transmission of miR-133a-3p.Together,PDE affects hippocampal excitatory synaptic transmission,with lasting consequences across generations,and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.展开更多
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金supported by grants from the National Key R&D Program of China No.2020YFA0803900(Hui Wang)the National Natural Science Foundation of China No.81973405(Dan Xu),No.82122071(Dan Xu),and No.82030111(Hui Wang)。
文摘The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons.Here we explored how gestational exposure to dexamethasone,a synthetic glucocorticoid commonly used in clinical practice,has lasting effects on offspring's learning and memory.Adult offspring rats of prenatal dexamethasone exposure(PDE)displayed significant impairments in novelty recognition and spatial learning memory,with some phenotypes maintained transgenerationally.PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations,and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory,but these changes failed to carry over to offspring of F5 and F7 generations.Mechanistically,altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission,which might be related to oocyte-specific high expression and transmission of miR-133a-3p.Together,PDE affects hippocampal excitatory synaptic transmission,with lasting consequences across generations,and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.