期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Calibration and uniqueness analysis of microparameters for DEM cohesive granular material 被引量:3
1
作者 songtao ji Jurij Karlovšek 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期121-136,共16页
The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus a... The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus and Poisson’s ratio,can be calibrated to high accuracy.The best calibration accuracy could reach the sum of relative errors RE_(sum)<0.1%.Most calibrations can be achieved with RE_(sum)<5%within hours or RE_(sum)<1%within 2 days.Based on the calibrated results,microparameters uniqueness analysis was carried out to reveal the correlation between microparameters and the macroscopic mechanical behaviour of material:(1)microparameters effective modulus,tensile strength and normal-to-shear stiffness ratio control the elastic behaviour and stable crack growth,(2)microparameters cohesion and friction angles present a negative linear correlation that controls the axial strain and lateral strain prior to the peak stress,and(3)microparameters friction coefficient controls shear crack friction and slip mainly refers to the unstable crack behaviour.Consideration of more macroparameters to regulate the material mechanical behaviour that is dominated by shear crack and slip motion is highlighted for future study.The DE calibration method is expected to serve as an alternative method to calibrate the DEM cohesive granular material to its peak strength. 展开更多
关键词 Discrete element method(DEM) Particle flow code(PFC) Differential evolution(DE) Parameter calibration Uniqueness analysis Post-peak behaviour
下载PDF
Analytical study of subcritical crack growth under mode I loading to estimate the roof durability in underground excavation 被引量:1
2
作者 songtao ji Zeng Wang Jurij Karlovšek 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期375-385,共11页
The long-term stability of the roof is particularly important in designing underground rock structures.To estimate the durability of roof strata in underground excavation,a computation scheme of subcritical crack grow... The long-term stability of the roof is particularly important in designing underground rock structures.To estimate the durability of roof strata in underground excavation,a computation scheme of subcritical crack growth is proposed in this study.By adopting the proposed method,the potential collapse location of strata is derivable in accordance with a static model,the durability of roof strata can be estimated,a dynamic time step control strategy is achieved to balance the accuracy and speed of computing,and the initial crack size of rock can be estimated.In addition to the above,a mechanical model of underground excavation with non-uniformly distributed loads and partially yielded foundation is presented as the prototypical case.A set of case studies is carried out that showcase a power correlation between applied stress and roof durability.The allowable applied tensile stress for a 100-year life cycle is about 76%of the tensile strength.By using the proposed subcritical crack growth computation scheme,the roof stability in an underground excavation can be identified not only from the spatial view but also from the temporal perspective. 展开更多
关键词 Roof durability Analytical model Subcritical crack growth Stress intensity factor Initial crack size Dynamic time step
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部