期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
ZnO(110)衬底上单层黑磷烯的外延生长
1
作者 赵程宇 张铭军 +1 位作者 赵宋焘 李震宇 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第1期79-86,I0029-I0035,I0118,共16页
二维黑磷烯作为新一代半导体材料,具有可调带隙和高载流子迁移率等优点,具有广阔的应用前景.但二维黑磷烯目前还不能直接大规模制备,限制了其进一步的研究和应用.分子束外延是一种广泛使用的具有较高外延质量的单晶薄膜生长方法,在制备... 二维黑磷烯作为新一代半导体材料,具有可调带隙和高载流子迁移率等优点,具有广阔的应用前景.但二维黑磷烯目前还不能直接大规模制备,限制了其进一步的研究和应用.分子束外延是一种广泛使用的具有较高外延质量的单晶薄膜生长方法,在制备二维黑磷烯方面具有广阔的应用前景.本文基于密度泛函理论计算筛选了ZnO(110)、GaN(110)、BP(110)和SiC(110)四种潜在的衬底,研究了二维黑磷烯在这些衬底上的生长情况.研究表明,ZnO(110)上的黑磷单层及团簇结构是稳定的,且磷在该表面扩散特性也有助于磷团簇的成核生长.本研究为高效制备二维黑磷烯及其他二维材料提供了有益的指导. 展开更多
关键词 黑磷烯 外延生长 密度泛函理论 从头算分子动力学 过渡态理论方法
下载PDF
First-Principles Study of Blue Phosphorene and Graphene Intralayer Heterostructure as Anode Materials for Rechargeable Li-lon Batteries
2
作者 Chunjie Sui Jiale Ma +1 位作者 songtao zhao Zhenyu Li 《Chinese Journal of Chemical Physics》 SCIE EI CAS 2024年第5期653-661,I0073-I0077,I0100,共15页
There is an ideal desire to develop the high-performance anodes materials for Liion batteries(LIBs),which requires not onlyhigh stability and reversibility,but also rapidcharging/discharging rate.In this work,webuilta... There is an ideal desire to develop the high-performance anodes materials for Liion batteries(LIBs),which requires not onlyhigh stability and reversibility,but also rapidcharging/discharging rate.In this work,webuiltablue phosphorene-graphene(BlueP-G)intralayer heterostructure by connecting BlueP and graphene monolayers at zigzag edges with covalent bonds.Based on the density functional theory simulation,the electronic structure of the heterostructure,Li adsorption and Li diffusion on heterostructure were systematically investigated.Compared with the pristine BlueP,the existence of graphene layer increases the overall conductivity of BlueP-G intralayer heterostructure.The significantly enhanced adsorption energy indicates the Li deposition on anode surface is energetically favored.The fast diffusion of Li with energy barrier as low as 0.02-0.09 eV indicates the growth of Li dendrite could be suppressed and the stability and reversibility of the battery will be increased.With a combination of increased conductivity of electronic charge,excellent Li adsorption and Li mobility on surface,BlueP-G intralayer heterostructure with zigzag interface is quite promising in the application of anode material for Li-ion batteries. 展开更多
关键词 Li-ion battery Blue phosphorene Anode material Density functional theory
下载PDF
2022年度交叉科学部基金项目评审工作综述 被引量:3
3
作者 赵宋焘 申茜 +3 位作者 戴亚飞 杜全生 潘庆 陈拥军 《中国科学基金》 CSSCI CSCD 北大核心 2023年第1期54-56,共3页
本文总结了2022年度国家自然科学基金委员会交叉科学部的评审相关工作,对各类项目受理、评审及资助情况进行梳理和分析,并提出下一年度工作思路。
关键词 国家自然科学基金委员会 交叉科学 项目评审 申请情况与资助情况
原文传递
Constructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction 被引量:1
4
作者 Xu Li Tingting Zheng +6 位作者 Lan Zhang songtao zhao Yinuo Chen Miaojin Wei Chunyan Shang Jun Bao Jie Zeng 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第12期1705-1710,共6页
Photocatalytic reduction of CO2 into value-added products is a promising strategy for mitigating environmental and energy problems simultaneously.Herein,we developed Au sheets with subtle grain boundaries on ultrathin... Photocatalytic reduction of CO2 into value-added products is a promising strategy for mitigating environmental and energy problems simultaneously.Herein,we developed Au sheets with subtle grain boundaries on ultrathin Ni(OH)2 nanosheets as efficient photocatalysts for CO2 reduction.According to mechanistic studies,grain boundaries on the Au sheets served as electron trapping sites which enabled the optimization of electron-hole separation.Moreover,grain boundaries perturbed electron distribution,which assisted in stabilizing CO2^δ- and HCOO^* intermediates.As a result,the unique hybrid structure achieved a high rate of 75.2μmol g^-1h^-1 for CO2 photoreduction.This work demonstrates the importance of defect engineering in designing active photocatalysts and also provides insight into development of related photo-energy conversion schemes. 展开更多
关键词 Au sheet grain boundary Ni(OH)2 nanosheet CO2 photoreduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部