S-scheme heterostructure photocatalysts can achieve highly efficient solar energy utilization.Here,singleatom Ni species were deposited onto TiO_(2)/g-C_(3)N_(4)(TCN)composite photocatalyst with an S-scheme het-erojun...S-scheme heterostructure photocatalysts can achieve highly efficient solar energy utilization.Here,singleatom Ni species were deposited onto TiO_(2)/g-C_(3)N_(4)(TCN)composite photocatalyst with an S-scheme het-erojunction for highly efficient photocatalytic water splitting to produce hydrogen.Under solar irradiation,it realized the hydrogen production activity of 134μmol g^(-1)h^(-1),about 5 times higher than the TCN without atomic Ni.Insitu Kelvin probe force microscopy characterization and the density functional cal-culation certify that by forming the S-scheme heterojunction,the photo-excited electrons from the TiO_(2)combine with the photogenerated holes at the coupled g-C_(3)N_(4)driven by a built-in electric field.More importantly,the single-atom Ni species stabilized the photogenerated electrons from the g-C_(3)N_(4)could effectively enhance the charge separation between the holes on the valence band of TiO_(2)and electrons at the conduction band of g-C_(3)N_(4).Meanwhile,the Ni atoms act as the surface catalytic centers for the water reduction reaction,which greatly improves the reactivity of the photocatalyst.The present work provides a new approach for developing noble metal-free heterojunctions for high-efficiency photocatalysis.展开更多
Thalamocortical circuitry has a substantial impact on emotion and cognition.Previous studies have demonstrated alterations in thalamocortical functional connectivity(FC),characterized by region-dependent hypo-or hyper...Thalamocortical circuitry has a substantial impact on emotion and cognition.Previous studies have demonstrated alterations in thalamocortical functional connectivity(FC),characterized by region-dependent hypo-or hyper-connectivity,among individuals with major depressive disorder(MDD).However,the dynamical reconfiguration of the thalamocortical system over time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear.Hence,we analyzed dynamic FC(dFC)between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic resonance images of 48 patients with MDD and 57 healthy controls(HCs)to investigate time-varying changes in thalamocortical FC in patients with MDD.Moreover,dynamic laterality analysis was conducted to examine the changes in functional lateralization of the thalamocortical system over time.Correlations between the dynamic measures of thalamocortical FC and clinical assessment were also calculated.We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with primary cortical networks,compared with the HCs.In addition,MDD patients also exhibited increased fluctuations in functional laterality in the thalamocortical system across the scan duration.The thalamo-subnetwork analysis unveiled abnormal dFC variability involving higher-order cortical networks in the MDD cohort.Significant correlations were found between increased dFC variability with dorsal attention and default mode networks and the severity of symptoms.Our study comprehensively investigated the pattern of alteration of the thalamocortical dFC in MDD patients.The heterogeneous alterations of dFC between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and cognitive processing in MDD.展开更多
The article(Zheng et al.,2024)unfortunately contained a mistake:in Table 3,four"I"elements in the last"LF in thalamus"column are mistaken.The four arrows should be"↑"in the following cor...The article(Zheng et al.,2024)unfortunately contained a mistake:in Table 3,four"I"elements in the last"LF in thalamus"column are mistaken.The four arrows should be"↑"in the following correctversion of Table3.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51774259 and 22378372).
文摘S-scheme heterostructure photocatalysts can achieve highly efficient solar energy utilization.Here,singleatom Ni species were deposited onto TiO_(2)/g-C_(3)N_(4)(TCN)composite photocatalyst with an S-scheme het-erojunction for highly efficient photocatalytic water splitting to produce hydrogen.Under solar irradiation,it realized the hydrogen production activity of 134μmol g^(-1)h^(-1),about 5 times higher than the TCN without atomic Ni.Insitu Kelvin probe force microscopy characterization and the density functional cal-culation certify that by forming the S-scheme heterojunction,the photo-excited electrons from the TiO_(2)combine with the photogenerated holes at the coupled g-C_(3)N_(4)driven by a built-in electric field.More importantly,the single-atom Ni species stabilized the photogenerated electrons from the g-C_(3)N_(4)could effectively enhance the charge separation between the holes on the valence band of TiO_(2)and electrons at the conduction band of g-C_(3)N_(4).Meanwhile,the Ni atoms act as the surface catalytic centers for the water reduction reaction,which greatly improves the reactivity of the photocatalyst.The present work provides a new approach for developing noble metal-free heterojunctions for high-efficiency photocatalysis.
基金supported by the Science and Technology Innovation 2030-Major Projects(Nos.2021ZD0202000,2021ZD0200800,and 2021ZD0200701)the National Key Research and Development Program of China(No.2019YFA0706200)+1 种基金the National Natural Science Foundation of China(Nos.62227807,62202212,U21A20520,and U22A2033)the Science and Technology Program of Gansu Province(No.23YFGA0004),China.
文摘Thalamocortical circuitry has a substantial impact on emotion and cognition.Previous studies have demonstrated alterations in thalamocortical functional connectivity(FC),characterized by region-dependent hypo-or hyper-connectivity,among individuals with major depressive disorder(MDD).However,the dynamical reconfiguration of the thalamocortical system over time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear.Hence,we analyzed dynamic FC(dFC)between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic resonance images of 48 patients with MDD and 57 healthy controls(HCs)to investigate time-varying changes in thalamocortical FC in patients with MDD.Moreover,dynamic laterality analysis was conducted to examine the changes in functional lateralization of the thalamocortical system over time.Correlations between the dynamic measures of thalamocortical FC and clinical assessment were also calculated.We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with primary cortical networks,compared with the HCs.In addition,MDD patients also exhibited increased fluctuations in functional laterality in the thalamocortical system across the scan duration.The thalamo-subnetwork analysis unveiled abnormal dFC variability involving higher-order cortical networks in the MDD cohort.Significant correlations were found between increased dFC variability with dorsal attention and default mode networks and the severity of symptoms.Our study comprehensively investigated the pattern of alteration of the thalamocortical dFC in MDD patients.The heterogeneous alterations of dFC between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and cognitive processing in MDD.
文摘The article(Zheng et al.,2024)unfortunately contained a mistake:in Table 3,four"I"elements in the last"LF in thalamus"column are mistaken.The four arrows should be"↑"in the following correctversion of Table3.