期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Genetic Variability and Elite Line Selection for High Essential Oil and Nepetalactone Content in Catmint (<i>Nepeta cataria</i>L.)
1
作者 Abhilasha Srivastava soni gupta +4 位作者 Swati Singh Ram Swaroop Verma Ramesh Kumar Srivastava Anil Kumar gupta Raj Kishori Lal 《American Journal of Plant Sciences》 2021年第7期1135-1154,共20页
<i><span style="font-family:Verdana;">Nepeta cataria</span></i><span style="font-family:Verdana;"> L.</span><span style="font-family:Verdana;">, ... <i><span style="font-family:Verdana;">Nepeta cataria</span></i><span style="font-family:Verdana;"> L.</span><span style="font-family:Verdana;">, commonly known as catmint or catnip, belongs to the family </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Lamiaceae</span><span style="font-family:Verdana;">”</span><span style="font-family:""><span style="font-family:Verdana;"> and is indigenous to Europe and Asia. The essential oil of this species is known for the richness and diversity of nepetalactones (NPL) which are used as mosquito/insect repellents in perfumery and cosmetic industries. Reports on Indian catmint germplasm are very meager and warrants exploration of its commercial potential as a natural, non-toxic source of insect repellents. With this objective, commercial open-pollinated seeds of catmint collected from its native, temperate habitat in Himalayas were introduced in the tropical plains. Subsequent to adaptation to a new zone we were able to isolate nineteen individual plants based on plant growth. Hydrodistillation of the fresh herb yielded essential oil in the range of 0.01% to 0.2%. Gas Chromatography (GC) and GC-Mass Spectrometry (GC-MS) analyses of the oil revealed the dominance of monoterpene hydrocarbon, namely, </span><b><span style="font-family:Verdana;">4aα,7α,7aα NPL</span></b><span style="font-family:Verdana;"> (1) isomer (84%). The other two isomers of nepetalactone, </span><b><span style="font-family:Verdana;">4aα,7α,7aβ NPL</span></b><span style="font-family:Verdana;"> (2) and </span><b><span style="font-family:Verdana;">4aα,7β,7aα NPL</span></b><span style="font-family:Verdana;"> (3) were also present, although in very </span></span><span style="font-family:Verdana;">less</span><span style="font-family:"color:red;"> </span><span style="font-family:""><span style="font-family:Verdana;">amounts (1.0% and 1.6%, respectively). Sesquiterpenes identified were α-humulene (traces), (</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">)-caryophyllene (0.6%) and caryophyllene oxide (1.7%). We compared the identified Indian catmint chemotype with the other oils from temperate, sub-tropical and tropical locations based on literature search. The Indian chemotype was found to be similar to the oils from Burundi, France, Turkey, UK and USA, mainly due to more accumulation of </span><b><span style="font-family:Verdana;">4aα,7α,7aα NPL</span></b><span style="font-family:Verdana;"> (1) isomer. These oils</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">grouped together in Principal Component Analysis. Breeding lines are presently being developed to improve yield related traits in this plant. Multidisciplinary R&D efforts along with setting up industry related guidelines are required to successfully commercialize catmint cultivation. Several species of </span><i><span style="font-family:Verdana;">Nepeta</span></i><span style="font-family:Verdana;"> genus have high nepetalactone content too and their potential as a commercial source of these isomers still needs to be explored. 展开更多
关键词 Gas Chromatography-Mass Spectrometry Genetic Improvement Half-Sib Selection Insect Repellent Principal Component Analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部