In this work, a grape phenolic extract obtained by methanol extraction has been demonstrated to be effective in inhibiting the growth of different strains and species of Campylobacter, one of the most important bacter...In this work, a grape phenolic extract obtained by methanol extraction has been demonstrated to be effective in inhibiting the growth of different strains and species of Campylobacter, one of the most important bacterial foodborne pathogens causing gastroenteritis worldwide. Noteworthily, it was particularly effective against several strains presenting multiple antibiotic resistances. In all cases, the minimum inhibitory concentration (MIC) was lower than 300 mg GAE/L, being of 60 mg GAE/L for one of the most resistant strains (C. coli LP2), while the others were between 120 mg GAE/L and 180 mg GAE/L. The analytical study of the main phenolic compounds in the grape extract revealed that it was mainly constituted by catechins (85.7%) and phenolic acids (13.7%). However, experiments developed using pure standards demonstrate that phenolic acids (such as gallic, p-hidroxibenzoic, vanillic, and homovanillic acids) were the most active, provoking a Campylobacter growth decrease between 6.7 and 7.6 log, while epicatechin was the only catechin with activity as pure compound (1 log of growth decrease).展开更多
文摘In this work, a grape phenolic extract obtained by methanol extraction has been demonstrated to be effective in inhibiting the growth of different strains and species of Campylobacter, one of the most important bacterial foodborne pathogens causing gastroenteritis worldwide. Noteworthily, it was particularly effective against several strains presenting multiple antibiotic resistances. In all cases, the minimum inhibitory concentration (MIC) was lower than 300 mg GAE/L, being of 60 mg GAE/L for one of the most resistant strains (C. coli LP2), while the others were between 120 mg GAE/L and 180 mg GAE/L. The analytical study of the main phenolic compounds in the grape extract revealed that it was mainly constituted by catechins (85.7%) and phenolic acids (13.7%). However, experiments developed using pure standards demonstrate that phenolic acids (such as gallic, p-hidroxibenzoic, vanillic, and homovanillic acids) were the most active, provoking a Campylobacter growth decrease between 6.7 and 7.6 log, while epicatechin was the only catechin with activity as pure compound (1 log of growth decrease).