期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Polymer donors with hydrophilic side-chains enabling efficient and thermally-stable polymer solar cells by non-halogenated solvent processing
1
作者 soodeok seo Jun-Young Park +4 位作者 Jin Su Park Seungjin Lee Do-Yeong Choi Yun-Hi Kim Bumjoon J.Kim 《Nano Research Energy》 2024年第1期19-29,共11页
Polymer solar cells(PSCs)with high power conversion efficiency(PCE)and environment-friendly fabrication are the main requirements enabling their production in industrial scale.While the use of non-halogenated solvent ... Polymer solar cells(PSCs)with high power conversion efficiency(PCE)and environment-friendly fabrication are the main requirements enabling their production in industrial scale.While the use of non-halogenated solvent processing is inevitable for the PSC fabrication,it significantly reduces the processability of polymer donors(PDS)and small-molecule acceptors(SMAs).This often results in unoptimized blend morphology and limits the device performance.To address this issue,hydrophilic oligoethylene glycol(OEG)side-chains are introduced into a PD(2EG)to enhance the molecular compatibility between the PD and L8-BO SMA.The 2EG PD induces higher crystallinity and alleviates phase separation with the SMA compared to the reference PD(PM7)with hydrocarbon side-chains.Consequently,the 2EG-based PSCs exhibit a higher PCE(15.8%)than the PM7-based PSCs(PCE=14.4%)in the ortho-xylene based processing.Importantly,benefitted from the reduced phase separation and increased crystallinity of 2EG PDS,the 2EG-based PSCs show enhanced thermal stability(84%of initial PCE after 120 h heating)compared to that of the PM7-based PSCs(60%of initial PCE after 120 h heating).This study demonstrates the potential of OEG side-chain-incorporated materials in developing efficient,stable,and eco-friendly PSCs. 展开更多
关键词 polymer solar cell polymer donor OEG side-chain non-halogenated solvent process side-chain engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部