The stability problems of the exponential (functional) equation on a restricted domain will be investigated, and the results will be applied to the study of an asymptotic property of that equation. More precisely, t...The stability problems of the exponential (functional) equation on a restricted domain will be investigated, and the results will be applied to the study of an asymptotic property of that equation. More precisely, the following asymptotic property is proved: Let X be a real (or complex) normed space. A mapping f : X → C is exponential if and only if f(x + y) - f(x)f(y) → 0 as ||x|| + ||y|| → ∞ under some suitable conditions.展开更多
We prove a global version of the implicit function theorem under a special condition and apply this result to the proof of a modified Hyers-Ulam-Rassias stability of exact differential equations of the form, g(x, y)...We prove a global version of the implicit function theorem under a special condition and apply this result to the proof of a modified Hyers-Ulam-Rassias stability of exact differential equations of the form, g(x, y) + h(x, y)y' =0.展开更多
文摘The stability problems of the exponential (functional) equation on a restricted domain will be investigated, and the results will be applied to the study of an asymptotic property of that equation. More precisely, the following asymptotic property is proved: Let X be a real (or complex) normed space. A mapping f : X → C is exponential if and only if f(x + y) - f(x)f(y) → 0 as ||x|| + ||y|| → ∞ under some suitable conditions.
文摘We prove a global version of the implicit function theorem under a special condition and apply this result to the proof of a modified Hyers-Ulam-Rassias stability of exact differential equations of the form, g(x, y) + h(x, y)y' =0.