期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The clinical impact of bacterial biofilms 被引量:49
1
作者 Niels Hoiby Oana Ciofu +7 位作者 Helle Krogh Johansen Zhi-jun Song Claus Moser Peter Ostrup Jenser soren molin Michael Givskov Tim Tolker-Nieisen Thomas Bjamsholt 《International Journal of Oral Science》 SCIE CAS CSCD 2011年第2期55-65,共11页
Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-pro... Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA. Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity and increased doubling times. These more or less dormant cells are therefore responsible for some of the tolerance to antibiotics. Biofilm growth is associated with an increased level of mutations. Bacteria in biofilms communicate by means of molecules, which activates certain genes responsible for production of virulence factors and, to some extent, biofilm structure. This phenomenon is called quorum sensing and depends upon the concentration of the quorum sensing molecules in a certain niche, which depends on the number of the bacteria. Biofilms can be prevented by antibiotic prophylaxis or early aggressive antibiotic therapy and they can be treated by chronic suppressive antibiotic therapy. Promising strategies may include the use of compounds which can dissolve the biofilm matrix and quorum sensing inhibitors, which increases biofilm susceptibility to antibiotics and phagocytosis. 展开更多
关键词 bacterial biofilm biofilm infection antibiotic resistance quorum sensing
下载PDF
Current understanding of multi-species biofilms 被引量:6
2
作者 Liang Yang Yang Liu +3 位作者 Hong Wu Niels Hoiby soren molin Zhi-jun Song 《International Journal of Oral Science》 SCIE CAS CSCD 2011年第2期74-81,共8页
Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be... Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent every year worldwide to deal with damage to equipment, contamina- tions of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi-species hiofilm formation will facilitate the development of methods for combating bacterial hiofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review. 展开更多
关键词 biofilms extracellular polymeric substances structure development INTERACTIONS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部