期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Investigation on Analog and Digital Modulations Recognition Using Machine Learning Algorithms
1
作者 Jean Ndoumbe Ivan Basile Kabeina +1 位作者 Gaelle Patricia Talotsing soubiel-noël nkomo biloo 《World Journal of Engineering and Technology》 2024年第4期867-884,共18页
In the field of radiocommunication, modulation type identification is one of the most important characteristics in signal processing. This study aims to implement a modulation recognition system on two approaches to m... In the field of radiocommunication, modulation type identification is one of the most important characteristics in signal processing. This study aims to implement a modulation recognition system on two approaches to machine learning techniques, the K-Nearest Neighbors (KNN) and Artificial Neural Networks (ANN). From a statistical and spectral analysis of signals, nine key differentiation features are extracted and used as input vectors for each trained model. The feature extraction is performed by using the Hilbert transform, the forward and inverse Fourier transforms. The experiments with the AMC Master dataset classify ten (10) types of analog and digital modulations. AM_DSB_FC, AM_DSB_SC, AM_USB, AM_LSB, FM, MPSK, 2PSK, MASK, 2ASK, MQAM are put forward in this article. For the simulation of the chosen model, signals are polluted by the Additive White Gaussian Noise (AWGN). The simulation results show that the best identification rate is the MLP neuronal method with 90.5% of accuracy after 10 dB signal-to-noise ratio value, with a shift of more than 15% from the k-nearest neighbors’ algorithm. 展开更多
关键词 Automatic Recognition Artificial Neural Networks K-Nearest Neighbors Machine Learning Analog Modulations Digital Modulations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部