期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Neural Networks Based Approach for Battery Life Prediction 被引量:3
1
作者 Sweta Bhattacharya Praveen Kumar Reddy Maddikunta +4 位作者 Iyapparaja Meenakshisundaram Thippa Reddy Gadekallu sparsh sharma Mohammed Alkahtani Mustufa Haider Abidi 《Computers, Materials & Continua》 SCIE EI 2021年第11期2599-2615,共17页
The Internet of Things(IoT)and related applications have witnessed enormous growth since its inception.The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain.... The Internet of Things(IoT)and related applications have witnessed enormous growth since its inception.The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain.Although the applicability of these applications are predominant,battery life remains to be a major challenge for IoT devices,wherein unreliability and shortened life would make an IoT application completely useless.In this work,an optimized deep neural networks based model is used to predict the battery life of the IoT systems.The present study uses the Chicago Park Beach dataset collected from the publicly available data repository for the experimentation of the proposed methodology.The dataset is pre-processed using the attribute mean technique eliminating the missing values and then One-Hot encoding technique is implemented to convert it to numerical format.This processed data is normalized using the Standard Scaler technique.Moth Flame Optimization(MFO)Algorithm is then implemented for selecting the optimal features in the dataset.These optimal features are finally fed into the DNN model and the results generated are evaluated against the stateof-the-art models,which justify the superiority of the proposed MFO-DNN model. 展开更多
关键词 Battery life prediction moth flame optimization one-hot encoding standard scaler
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部