期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of a Balanced Adaptive Time‑Stepping Strategy Based on an Implicit JFNK‑DG Compressible Flow Solver
1
作者 Yu Pan Zhen‑Guo Yan +1 位作者 Joaquim Peiró spencer j.sherwin 《Communications on Applied Mathematics and Computation》 2022年第2期728-757,共30页
A balanced adaptive time-stepping strategy is implemented in an implicit discontinuous Galerkin solver to guarantee the temporal accuracy of unsteady simulations.A proper relation between the spatial,temporal and iter... A balanced adaptive time-stepping strategy is implemented in an implicit discontinuous Galerkin solver to guarantee the temporal accuracy of unsteady simulations.A proper relation between the spatial,temporal and iterative errors generated within one time step is constructed.With an estimate of temporal and spatial error using an embedded RungeKutta scheme and a higher order spatial discretization,an adaptive time-stepping strategy is proposed based on the idea that the time step should be the maximum without obviously infuencing the total error of the discretization.The designed adaptive time-stepping strategy is then tested in various types of problems including isentropic vortex convection,steady-state fow past a fat plate,Taylor-Green vortex and turbulent fow over a circular cylinder at Re=3900.The results indicate that the adaptive time-stepping strategy can maintain that the discretization error is dominated by the spatial error and relatively high efciency is obtained for unsteady and steady,well-resolved and under-resolved simulations. 展开更多
关键词 Adaptive time-stepping Unsteady simulations High order Discontinuous Galerkin Implicit time integration
下载PDF
Spectral/hp element methods:Recent developments, applications, and perspectives 被引量:2
2
作者 Hui Xu Chris D.Cantwell +3 位作者 Carlos Monteserin Claes Eskilsson Allan P.Engsig-Karup spencer j.sherwin 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第1期1-22,共22页
The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomia... The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials,modified to accommodate a C~0-continuous expansion. Computationally and theoretically, by increasing the polynomial order p,high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed. 展开更多
关键词 High-precision spectral/hp elements continuous Galerkin method discontinuous Galerkin method implicit large eddy simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部