In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy c...In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.展开更多
文摘In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.