Today the controller commissioning of industrial used servo drives is usually realized in the frequency domain with the open-loop frequency response. In contrast to that the cascaded system of position loop, velocity ...Today the controller commissioning of industrial used servo drives is usually realized in the frequency domain with the open-loop frequency response. In contrast to that the cascaded system of position loop, velocity loop and current loop, which is standard in industrial motion controllers, is described in literature by using parametric models. Several tuning rules in the time domain are applicable on the basis of these parametric descriptions. In order to benefit from the variety of tuning rules an identification method in the time domain is required. The paper presents a method for the identification of plant parameters in the time domain. The approach is based on the auto relay feedback experiment by ?str?m/ H?gglund and a modified technique of gradual pole compensation. The paper presents the theoretical description as well as the implementtation as an automatic application in the motion control system SIMOTION. The identification results as well as the achievable performance on a test rig with a PI velocity controller will be presented.展开更多
The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy-and resource-efficient drivetrains.Water-containing lubricants like glycerol and polyalkylene glycols h...The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy-and resource-efficient drivetrains.Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication.Additionally,a bio-based production of the base stocks can lead to the development of green lubricants.However,one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties.In this study,the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols.Two nominal water contents of 20 wt%and 40 wt%and two viscosities were considered.The results show that the friction increases continuously with higher evaporated water content,while the overall friction level remains low in nearly water-free states.A similar trend is observed for film thickness,where the strong increase in viscosity results in a notable increase in film thickness.Nevertheless,the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water.This allows generous thresholds for permissible variations in water content.展开更多
文摘Today the controller commissioning of industrial used servo drives is usually realized in the frequency domain with the open-loop frequency response. In contrast to that the cascaded system of position loop, velocity loop and current loop, which is standard in industrial motion controllers, is described in literature by using parametric models. Several tuning rules in the time domain are applicable on the basis of these parametric descriptions. In order to benefit from the variety of tuning rules an identification method in the time domain is required. The paper presents a method for the identification of plant parameters in the time domain. The approach is based on the auto relay feedback experiment by ?str?m/ H?gglund and a modified technique of gradual pole compensation. The paper presents the theoretical description as well as the implementtation as an automatic application in the motion control system SIMOTION. The identification results as well as the achievable performance on a test rig with a PI velocity controller will be presented.
基金based on the research project CHEPHREN(Nos.03EN4005A and 03EN4029A)supported by the Federal Ministry for Economic Affairs and Climate Action(BMWK)supervised by Project Management Jülich(PtJ).
文摘The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy-and resource-efficient drivetrains.Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication.Additionally,a bio-based production of the base stocks can lead to the development of green lubricants.However,one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties.In this study,the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols.Two nominal water contents of 20 wt%and 40 wt%and two viscosities were considered.The results show that the friction increases continuously with higher evaporated water content,while the overall friction level remains low in nearly water-free states.A similar trend is observed for film thickness,where the strong increase in viscosity results in a notable increase in film thickness.Nevertheless,the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water.This allows generous thresholds for permissible variations in water content.