期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Assessing stress conditions and impact velocities in fluidized bed opposed jet mills
1
作者 Alexander Strobel Benedikt Koninger +3 位作者 stefan romeis Florian Schott Karl-Ernst Wirth Wolfgang Peukert 《Particuology》 SCIE EI CAS CSCD 2020年第6期12-22,共11页
Fluidized bed opposed jet mills are capable of meeting the continuously growing dema nd for contamination-free fine particles.In this type of jet mill,the solid material is entrained and accelerated by expanding gas j... Fluidized bed opposed jet mills are capable of meeting the continuously growing dema nd for contamination-free fine particles.In this type of jet mill,the solid material is entrained and accelerated by expanding gas jets that are focused onto a focal point in side a fluidized bed.The resulting particle collisions induce breakage.The process is affected by the relative particle velocities and the number of particle-particle collisions.Clearly,both quantities are distributed.However,to date,neither relative particle velocities nor collision frequencies in such units have been determined.The present work introduces an innovative method to assess the stressing conditions in jet mills experimentally.To this end,mixtures of glass and ductile metal microspheres were used,with the latter employed in small amounts.Inter-particle collisions between the aluminum and glass spheres lead to the formation of dents on the microparticles.The size and number of these dents are associated with the individual collision velocities and overall collision frequencies.The correlation between dent size and collision velocity was obtained from finite element calculations based on empirical data.The proposed approach was validated using particle image velocimetry during secondary gas injection into a fluidized bed reactor.In this case the effect of the distance between two opposed nozzles was examined.For a lab-scaled fluidized bed opposed jet mill the effects of gas pressure and hold-up were investigated.Relative particle velocities were found to be sign ificantly lower tha n the gas velocities,while the nu mber of contacts per particle was determined to be extremely high. 展开更多
关键词 Fluidized bed opposed jet mill Single particle probes Finite element modeling Stress number distribution Relative velocity distribution
原文传递
Mechanically induced phase transformation of zinc sulfide
2
作者 Cornelia Damm Patrick Armstrong +2 位作者 Christian Roβkopf stefan romeis Wolfgang Peukert 《Particuology》 SCIE EI CAS CSCD 2015年第1期1-10,共10页
Molecular dynamics (MD) simulations of the consecutive compression-decompression cycles ot hexagonal zinc sulfide (wurtzite) nanoparticles predict an irreversible phase transformation to the cubic polymorph.The ph... Molecular dynamics (MD) simulations of the consecutive compression-decompression cycles ot hexagonal zinc sulfide (wurtzite) nanoparticles predict an irreversible phase transformation to the cubic polymorph.The phase transformation commences at the contact area between the particle and the inden- ter and proceeds with the number of compression cycles. Dislocations are visible for a particle size above 5nm. Results from wet grinding and dry powder compression experiments on a commercial wurtzite pigment agree qualitatively with MD simulation predictions. X-ray diffraction patterns reveal that the amount of cubic polymorph in the compressed samples increases with pressure applied to the powder. In comparison with powder compression, wet milling leads to a more pronounced phase transformation. This occurs because the particles are exposed to a large number of stress events by collision with the grinding media, which leads to the formation of defects and new surface crystallites by particle fracture. According to the MD simulations, phase transformation is expected to occur preferentially in surface crystallites because they experience the highest mechanical load. Because of the phase transformation, the wet ground and compressed samples exhibit a lower photo- luminescence intensity than the feed material. In comparison with powder compression, milling reduces the photoluminescence intensity more substantially. This occurs because a higher defect concentration is formed. The defects contribute to the phase transformation and photoluminescence quenching. 展开更多
关键词 Polymorph transformationZinc sulfide Molecular dynamics simulation Wet milling Powder compression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部