期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Technology Readiness of a Vertical-Axis Hydro-Kinetic Turbine
1
作者 stefan runge Thorsten Stoesser +1 位作者 Emily Morris Madeleine White 《Journal of Power and Energy Engineering》 2018年第8期63-85,共23页
In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, develo... In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, developed by NASA and modified by the US Department of Energy, is followed and it is shown that the hydrokinetic turbine successfully reaches TRL 7, which is a full-scale, similar (prototypical) system demonstrated in a relevant environment. The concept of the twin turbine (TRL 1 - 3) is first validated and tested using a 1:10 scale laboratory model at Cardiff University and efficiencies of up to 75% are achieved (TRL 4 - 5). In order to justify system functionality and performance in a relevant environment as well as up-scalability, a 1:3 scale model of the twin turbine is implemented and tested in a discharge channel of a water treatment plant in Atlanta, thereby achieving TRL6. This paved the way for an application in the form of an array of ten full-scale twin turbine prototypes, including all relevant components such as housing, drive-train, gear-box and generator. Successful deployment and testing in the South Boulder Canal near Denver means that the hydrokinetic twin turbine system reached TRL7. 展开更多
关键词 Hydro-Turbine Vertical-Axis VAT MICRO-HYDRO TRL Technology Readiness Level
下载PDF
Design and Performance of a Novel Spillway Turbine
2
作者 Filipa Adzic Thorsten Stoesser +1 位作者 Emily Morris stefan runge 《Journal of Power and Energy Engineering》 2020年第5期14-31,共18页
The high-speed supercritical flow in steeply sloped channels contains a significant amount of hydro-kinetic energy. A novel, horizontal axis, spillway turbine as presented in this paper attempts to convert that energy... The high-speed supercritical flow in steeply sloped channels contains a significant amount of hydro-kinetic energy. A novel, horizontal axis, spillway turbine as presented in this paper attempts to convert that energy into electricity. We report on the turbine’s design and experimental testing. Its intended use is in low-head, low-flow, manmade, concrete-lined channels such as chutes, spillways and other similar steeply sloped open-channels. The design lends itself from an impulse turbine runner but without a pipe or a nozzle. The spillway turbine consists of 2 main components: 1) the runner and 2) an accelerator channel that directs the water towards the runner’s blades. The runner, once fitted with Pelton-inspired “cup inserts” shows performance improvements both in terms of efficiency and specific speeds. The specific speed and the speed factors calculated confirm that this novel spillway turbine runner can be categorized as an impulse turbine. The maximum efficiency obtained during laboratory testing is 43.4% and hence competes well with standard hydrokinetic turbines. 展开更多
关键词 Hydro-Turbine Spillway-Turbine MICRO-HYDRO Horizontal-Axis IMPULSE Low-Head
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部