期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
从中欧博士生培养模式比较探索创新型博士的培养 被引量:3
1
作者 成花林 黄雨 +1 位作者 Elmar Schmaltz stefan steger 《研究生教育研究》 CSSCI 2017年第1期83-87,共5页
创新能力是博士生培养的核心内容和重要任务,与西方发达国家相比,我国博士生创新能力培养目前还存在一些缺憾。本文通过实地考察和文献调研,深入剖析欧洲博士生培养模式,并从选拔方式、课程设置、导师指导和考核评价四个方面对中欧博士... 创新能力是博士生培养的核心内容和重要任务,与西方发达国家相比,我国博士生创新能力培养目前还存在一些缺憾。本文通过实地考察和文献调研,深入剖析欧洲博士生培养模式,并从选拔方式、课程设置、导师指导和考核评价四个方面对中欧博士生的培养模式进行分析比较,提出构建我国创新型博士培养模式的对策建议。 展开更多
关键词 中欧 博士生 培养模式 创新
下载PDF
National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data 被引量:11
2
作者 Qigen Lin Pedro Lima +5 位作者 stefan steger Thomas Glade Tong Jiang Jiahui Zhang Tianxue Liu Ying Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期262-276,共15页
China is one of the countries where landslides caused the most fatalities in the last decades. The threat that landslide disasters pose to people might even be greater in the future, due to climate change and the incr... China is one of the countries where landslides caused the most fatalities in the last decades. The threat that landslide disasters pose to people might even be greater in the future, due to climate change and the increasing urbanization of mountainous areas. A reliable national-scale rainfall induced landslide susceptibility model is therefore of great relevance in order to identify regions more and less prone to landsliding as well as to develop suitable risk mitigating strategies. However, relying on imperfect landslide data is inevitable when modelling landslide susceptibility for such a large research area. The purpose of this study is to investigate the influence of incomplete landslide data on national scale statistical landslide susceptibility modeling for China. In this context, it is aimed to explore the benefit of mixed effects modelling to counterbalance associated bias propagations. Six influencing factors including lithology, slope,soil moisture index, mean annual precipitation, land use and geological environment regions were selected based on an initial exploratory data analysis. Three sets of influencing variables were designed to represent different solutions to deal with spatially incomplete landslide information: Set 1(disregards the presence of incomplete landslide information), Set 2(excludes factors related to the incompleteness of landslide data), Set 3(accounts for factors related to the incompleteness via random effects). The variable sets were then introduced in a generalized additive model(GAM: Set 1 and Set 2) and a generalized additive mixed effect model(GAMM: Set 3) to establish three national-scale statistical landslide susceptibility models: models 1, 2 and 3. The models were evaluated using the area under the receiver operating characteristics curve(AUROC) given by spatially explicit and non-spatial cross-validation. The spatial prediction pattern produced by the models were also investigated. The results show that the landslide inventory incompleteness had a substantial impact on the outcomes of the statistical landslide susceptibility models. The cross-validation results provided evidence that the three established models performed well to predict model-independent landslide information with median AUROCs ranging from 0.8 to 0.9.However, although Model 1 reached the highest AUROCs within non-spatial cross-validation(median of 0.9), it was not associated with the most plausible representation of landslide susceptibility. The Model 1 modelling results were inconsistent with geomorphological process knowledge and reflected a large extent the underlying data bias. The Model 2 susceptibility maps provided a less biased picture of landslide susceptibility. However, a lower predicted likelihood of landslide occurrence still existed in areas known to be underrepresented in terms of landslide data(e.g., the Kuenlun Mountains in the northern Tibetan Plateau). The non-linear mixed-effects model(Model 3) reduced the impact of these biases best by introducing bias-describing variables as random effects. Among the three models, Model 3 was selected as the best national-scale susceptibility model for China as it produced the most plausible portray of rainfall induced landslide susceptibility and the highest spatially explicit predictive performance(median AUROC of spatial cross validation 0.84) compared to the other two models(median AUROCs of 0.81 and 0.79, respectively). We conclude that ignoring landslide inventory-based incompleteness can entail misleading modelling results and that the application of non-linear mixed-effect models can reduce the propagation of such biases into the final results for very large areas. 展开更多
关键词 Statistical modelling Landslide susceptibility Generalized additive model Mixed-effects model China
下载PDF
Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility 被引量:8
3
作者 Pedro LIMA stefan steger +1 位作者 Thomas GLADE Franny G.MURILLO-GARCIA 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1670-1698,共29页
In recent decades, data-driven landslide susceptibility models(Dd LSM), which are based on statistical or machine learning approaches, have become popular to estimate the relative spatial probability of landslide occu... In recent decades, data-driven landslide susceptibility models(Dd LSM), which are based on statistical or machine learning approaches, have become popular to estimate the relative spatial probability of landslide occurrence. The available literature is composed of a wealth of published studies and that has identified a large variety of challenges and innovations in this field. This review presents a comprehensive up-to-date overview focusing on the topic of Dd LSM. This research begins with an introduction of the theoretical aspects of Dd LSM research and is followed by an in-depth bibliometric analysis of 2585 publications. This analysis is based on the Web of Science, Clarivate Analytics database and provides insights into the transient characteristics and research trends within published spatial landslide assessments. Following the bibliometric analysis, a more detailed review of the most recent publications from 1985 to 2020 is given. A variety of different criteria are explored in detail, including research design, study area extent,inventory characteristics, classification algorithms, predictors utilized, and validation technique performed. This section, dealing with a quantitativeoriented review expands the time-frame of the review publication done by Reichenbach et al. in 2018 by also accounting for the four years, 2017-2020. The originality of this research is acknowledged by combining together:(a) a recap of important theoretical aspects of Dd LSM;(b) a bibliometric analysis on the topic;(c) a quantitative-oriented review of relevant publications;and(d) a systematic summary of the findings, indicating important aspects and potential developments related to the Dd LSM research topic. The results show that Dd LSM are used within a wide range of applications with study area extents ranging from a few kilometers to national and even continental scales. In more than 70% of publications, a combination of the predictors, slope angle, aspect and geology are used. Simple classifiers, such as, logistic regression or approaches based on frequency ratio are still popular, despite the upcoming trend of applying machine learning algorithms. When analyzing validation techniques, 38% of the publications were not clear about the validation method used. Within the studies that included validation techniques, the AUROC was the most popular validation metric, being used accounting for 44% of the studies. Finally, it can be concluded that the application of new classification techniques is often cited as a main research scope, even though the most relevant innovation could also lie in tackling data-quality issues and research designs adaptations to fit the input data particularities in order to improve prediction quality. 展开更多
关键词 REVIEW Landslide susceptibility Statistical models Machine learning BIBLIOMETRICS
下载PDF
Landslide susceptibility: a statistically-based assessment on a depositional pyroclastic ramp 被引量:1
4
作者 Franny G.MURILLO-GARCíA stefan steger Irasema ALCáNTARA-AYALA 《Journal of Mountain Science》 SCIE CSCD 2019年第3期561-580,共20页
This study aimed to produce a high-quality landslide susceptibility map for Teziutlán municipality, a landslide-prone region in Mexico, which is characterised by a depositional pyroclastic ramp. The heterogeneous... This study aimed to produce a high-quality landslide susceptibility map for Teziutlán municipality, a landslide-prone region in Mexico, which is characterised by a depositional pyroclastic ramp. The heterogeneous quality of available topographic information(i.e. higher resolution digital elevation model only for a sub-region) encouraged to confront modelling results based on two different study area delineations and two raster resolutions. Input data was based on the larger modelling region L15(163 km2) and smaller S(70 km2; located inside L15) with an associated raster cell size of 15 m(region L15 and S15) and 5 m(region S5). The resulting three data sets(L15, S15 and S5) were included into three differently flexible modelling techniques(Generalized Linear Model-GLM, General Additive Model-GAM, Support Vector Machine-SVM) to produce nine landslide susceptibility models. Preceding variable selection was performed heuristically and supported by an exploratory data analysis. The final models were based on the explanatory variables slope angle, slope aspect, lithology, relative slope position, elevation, convergence index, distance to streams, distance to springs and topographic wetness index. The ability of the models to classify independent test data was elaborated using a k-fold cross validation procedure and the AUROC(Area Under the Receiver Operating Characteristic) metric. In general, all produced landslide susceptibility maps depicted the hillslopes of the ravines, which cut the pyroclastic ramp, as prone to landsliding. The modelling results showed that predictive performances(i.e. AUROC values) slightly increased with an increasing flexibility of the applied modelling technique. Thus, SVM performed best, while the GAM outperformed the GLM. This tendency was most distinctive when modelling with the largest landslide sample size(i.e. data set L15; n = 662 landslides). Non-linear classifiers(GAMs, SVMs) performed slightly better when trained on the basis of lower raster resolution(data set S15) compared to the 5 m counterparts(data set S5). Highest predictive performance was obtained for the model based on data set L15 and the SVM classifier(median AUROC: 0.82). However, SVMs also indicated the highest degree of model overfitting. This study indicates that the decision to delineate a study area, the selection of a raster resolution as well as the chosen classification technique can affect varying aspects of subsequent modelling results. The results do not support the assumption that a higher raster resolution(i.e. a more detailed digital representation of the terrain) inevitably leads to better performing or geomorphically more plausible landslide susceptibility maps. 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY PYROCLASTIC RAMP LOGISTIC regression Generalized Additive Model Support Vector Machine Cross validation
下载PDF
Adopting the margin of stability for space–time landslide prediction–A data-driven approach for generating spatial dynamic thresholds
5
作者 stefan steger Mateo Moreno +10 位作者 Alice Crespi stefano Luigi Gariano Maria Teresa Brunetti Massimo Melillo Silvia Peruccacci Francesco Marra Lotte de Vugt Thomas Zieher Martin Rutzinger Volkmar Mair Massimiliano Pittore 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第5期75-92,共18页
Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory conditions along with static predisposition factors.While data-driven methods for assessing landslide susceptibili... Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory conditions along with static predisposition factors.While data-driven methods for assessing landslide susceptibility or for establishing rainfall-triggering thresholds are prevalent,integrating spatiotemporal information for dynamic large-area landslide prediction remains a challenge.The main aim of this research is to generate a dynamic spatial landslide initiation model that operates at a daily scale and explicitly counteracts potential errors in the available landslide data.Unlike previous studies focusing on space–time landslide modelling,it places a strong emphasis on reducing the propagation of landslide data errors into the modelling results,while ensuring interpretable outcomes.It introduces also other noteworthy innovations,such as visualizing the final predictions as dynamic spatial thresholds linked to true positive rates and false alarm rates and by using animations for highlighting its application potential for hindcasting and scenario-building.The initial step involves the creation of a spatio-temporally representative sample of landslide presence and absence observations for the study area of South Tyrol,Italy(7400 km2)within well-investigated terrain.Model setup entails integrating landslide controls that operate on various temporal scales through a binomial Generalized Additive Mixed Model.Model relationships are then interpreted based on variable importance and partial effect plots,while predictive performance is evaluated through various crossvalidation techniques.Optimal and user-defined probability cutpoints are used to establish quantitative thresholds that reflect both,the true positive rate(correctly predicted landslides)and the false positive rate(precipitation periods misclassified as landslide-inducing conditions).The resulting dynamic maps directly visualize landslide threshold exceedance.The model demonstrates high predictive performance while revealing geomorphologically plausible prediction patterns largely consistent with current process knowledge.Notably,the model also shows that generally drier hillslopes exhibit a greater sensitivity to certain precipitation events than regions adapted to wetter conditions.The practical applicability of the approach is demonstrated in a hindcasting and scenario-building context.In the currently evolving field of space–time landslide modelling,we recommend focusing on data error handling,model interpretability,and geomorphic plausibility,rather than allocating excessive resources to algorithm and case study comparisons. 展开更多
关键词 Early warning Space-time model Rainfall thresholds Landslide susceptibility Generalized Additive Mixed Model Forecasting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部