Conventional mining of economically and strategically important critical rare earth elements(REEs)(such as neodymium,lanthanum and dysprosium),and chalcogens(such as selenium and tellurium)are associated with a huge e...Conventional mining of economically and strategically important critical rare earth elements(REEs)(such as neodymium,lanthanum and dysprosium),and chalcogens(such as selenium and tellurium)are associated with a huge economic and environmental cost.Therefore,the need to recover REEs as well as chalcogens from different waste streams including wastewaters is becoming urgent.Batch assays on synthetic chalcogen/REE-laden wastewater showed that the presence of REEs significantly improved the tellurite removal rate(>80%)and enhanced selenate removal by 66%±10%.Three 3.9 L continuous upflow anaerobic granular sludge bed(UASB)reactors were operated at a hydraulic retention time of 24 h and 30℃.Selenate reduction was achieved with a removal efficiency of~98% with an influent p H of 4.0 for more than 28 days.The effect of REEs on tellurite removal in the UASB bioreactor could not be clearly established since a soluble tellurium removal efficiency of more than 98%was observed already before the addition of REEs at elevated tellurite concentrations.The complete REE removal in both batch assays and UASB reactors at higher pH(7.0±0.5)was attributed to precipitation,whereas chalcogen oxyanions removal was due to microbial reduction.However,at acidic p H,biosorption was responsible for REE's removal,and the Se-enriched sludge exhibited a superior REE's removal efficiency than the non-enriched and Te-enriched sludge.展开更多
The production of single cell protein(SCP)using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition.However,multiple steps are necessary for lignocellulosics-to-SCP processe...The production of single cell protein(SCP)using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition.However,multiple steps are necessary for lignocellulosics-to-SCP processes,involving chemical pretreatments and specific aerobic cultures.Whereas there are no studies that investigated the SCP production from lignocellulosics by using only biological processes and microbial biomass able to work both anaerobically and aerobically.In this view,the valorisation of industrial hemp(Cannabis sativa L.)biomass residues(HBRs),specifically hurds and a mix of leaves and inflorescences,combined with cheese whey(CW)was investigated through a semi-continuous acidogenic co-fermentation process(co-AF).The aim of this study was to maximise HBRs conversion into VFAs to be further used as carbon-rich substrates for SCP production.Different process conditions were tested by either removing CW or increasing the amount of HBRs in terms of VS(i.e.,two and four times)to evaluate the performance of the co-AF process.Increasing HBRs resulted in a proportional increase in VFA production up to 3115 mg HAc L^(-1),with experimental production nearly 40%higher than theoretical predictions.The synergy between HBRs and CW was demonstrated,proving the latter as essential to improve the biodegradability of the former.The produced VFAs were subsequently tested as substrates for SCP synthesis in batch aerobic tests.A biomass concentration of 2.43 g TSS L^(-1) was achieved with a C/N ratio of 5.0 and a pH of 9.0 after two days of aerobic fermentation,reaching a protein content of 42%(g protein per g TSS).These results demonstrate the overall feasibility of the VFA-mediated HBR-to-SCP valorisation process.展开更多
基金financially by the Erasmus+programme of the European Union,the Science Foundation Ireland(SFI)through the SFI Research Professorship Programme entitled Innovative Energy Technologies for Biofuels,Bioenergy and a Sustainable Irish Bioeconomy(IETSBIO3)(No.15/RP/2763)the Research Infrastructure Research Grant Platform for Biofuel Analysis(No.16/RI/3401).
文摘Conventional mining of economically and strategically important critical rare earth elements(REEs)(such as neodymium,lanthanum and dysprosium),and chalcogens(such as selenium and tellurium)are associated with a huge economic and environmental cost.Therefore,the need to recover REEs as well as chalcogens from different waste streams including wastewaters is becoming urgent.Batch assays on synthetic chalcogen/REE-laden wastewater showed that the presence of REEs significantly improved the tellurite removal rate(>80%)and enhanced selenate removal by 66%±10%.Three 3.9 L continuous upflow anaerobic granular sludge bed(UASB)reactors were operated at a hydraulic retention time of 24 h and 30℃.Selenate reduction was achieved with a removal efficiency of~98% with an influent p H of 4.0 for more than 28 days.The effect of REEs on tellurite removal in the UASB bioreactor could not be clearly established since a soluble tellurium removal efficiency of more than 98%was observed already before the addition of REEs at elevated tellurite concentrations.The complete REE removal in both batch assays and UASB reactors at higher pH(7.0±0.5)was attributed to precipitation,whereas chalcogen oxyanions removal was due to microbial reduction.However,at acidic p H,biosorption was responsible for REE's removal,and the Se-enriched sludge exhibited a superior REE's removal efficiency than the non-enriched and Te-enriched sludge.
基金The present research was supported by INPS“Istituto Nazionale di Previdenza Sociale”。
文摘The production of single cell protein(SCP)using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition.However,multiple steps are necessary for lignocellulosics-to-SCP processes,involving chemical pretreatments and specific aerobic cultures.Whereas there are no studies that investigated the SCP production from lignocellulosics by using only biological processes and microbial biomass able to work both anaerobically and aerobically.In this view,the valorisation of industrial hemp(Cannabis sativa L.)biomass residues(HBRs),specifically hurds and a mix of leaves and inflorescences,combined with cheese whey(CW)was investigated through a semi-continuous acidogenic co-fermentation process(co-AF).The aim of this study was to maximise HBRs conversion into VFAs to be further used as carbon-rich substrates for SCP production.Different process conditions were tested by either removing CW or increasing the amount of HBRs in terms of VS(i.e.,two and four times)to evaluate the performance of the co-AF process.Increasing HBRs resulted in a proportional increase in VFA production up to 3115 mg HAc L^(-1),with experimental production nearly 40%higher than theoretical predictions.The synergy between HBRs and CW was demonstrated,proving the latter as essential to improve the biodegradability of the former.The produced VFAs were subsequently tested as substrates for SCP synthesis in batch aerobic tests.A biomass concentration of 2.43 g TSS L^(-1) was achieved with a C/N ratio of 5.0 and a pH of 9.0 after two days of aerobic fermentation,reaching a protein content of 42%(g protein per g TSS).These results demonstrate the overall feasibility of the VFA-mediated HBR-to-SCP valorisation process.