期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Flood susceptibility assessment using artificial neural networks in Indonesia
1
作者 stela priscillia Calogero Schillaci Aldo Lipani 《Artificial Intelligence in Geosciences》 2021年第1期215-222,共8页
Flood incidents can massively damage and disrupt a city economic or governing core.However,flood risk can be mitigated through event planning and city-wide preparation to reduce damage.For,governments,firms,and civili... Flood incidents can massively damage and disrupt a city economic or governing core.However,flood risk can be mitigated through event planning and city-wide preparation to reduce damage.For,governments,firms,and civilians to make such preparations,flood susceptibility predictions are required.To predict flood susceptibility nine environmental related factors have been identified.They are elevation,slope,curvature,topographical wetness index(TWI),Euclidean distance from a river,land-cover,stream power index(SPI),soil type and precipitation.This work will use these environmental related factors alongside Sentinel-1 satellite imagery in a model intercomparison study to back-predict flood susceptibility in Jakarta for the January 2020 historic flood event across 260 key locations.For each location,this study uses current environmental conditions to predict flood status in the following month.Considering the imbalance between instances of flooded and non-flooded conditions,the Synthetic Minority Oversampling Technique(SMOTE)has been implemented to balance both classes in the training set.This work compares predictions from artificial neural networks(ANN),k-Nearest Neighbors algorithms(k-NN)and Support Vector Machines(SVM)against a random baseline.The effects of the SMOTE are also assessed by training each model on balanced and imbalanced datasets.The ANN is found to be superior to the other machine learning models. 展开更多
关键词 Radar remote sensing TOPOGRAPHY DEM CNN SEGMENTATION FLOOD Water
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部