Chitosan (CHN) specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells, which could be suppressed by an inhibitor of mitogen-activated protein kinase (MAPK) pathway, PD98059. The immunopre...Chitosan (CHN) specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells, which could be suppressed by an inhibitor of mitogen-activated protein kinase (MAPK) pathway, PD98059. The immunoprecipitation (IP) using MAPK antibody or kinase assay in vitro also showed that CHN-induced 42 kD and 39 kD protein kinases belonged to the MAPK family. PD98059 suppressed CHN-induced transcriptions of ginseng squalene synthase and ginseng squalene epoxidase genes (gss and gse), CHN-induced accumulation of β-Amyrin synthase (β-AS) and synthesis of saponin. These results showed that CHN-induced activities of MAPKs were necessary for the CHN-induced saponin synthesis. EGTA and LaCl3 suppressed CHN-induced 39 kD and 42 kD MAPK activities. Ruthenium red (RR) could suppress CHN-induced 39 kD activity. All of them suppressed CHN-induced saponin synthesis. These results indicated that CHN-induced increment of cytosolic calcium was necessary for CHN-induced saponin synthesis. PD98059 also suppressed CHN-induced oxidative burst (including the increment of activity of plasma membrane NADPH oxidase and production of H2O2), but diphenylene iodonium (DPI), dimethylthiourea (DMTU) and 2,5-dihydroxycinnamic acid methyl ester (DHC) could not suppress CHN-induced MAPK activities, which indicated that MAPK was possibly function upstream of CHN-induced oxidative burst. Keywords mitogen-activated protein kinase - chitosan - saponin展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.39870050)the Chinese Academy of Sciences(Grant No.KSCX2-SW-322).
文摘Chitosan (CHN) specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells, which could be suppressed by an inhibitor of mitogen-activated protein kinase (MAPK) pathway, PD98059. The immunoprecipitation (IP) using MAPK antibody or kinase assay in vitro also showed that CHN-induced 42 kD and 39 kD protein kinases belonged to the MAPK family. PD98059 suppressed CHN-induced transcriptions of ginseng squalene synthase and ginseng squalene epoxidase genes (gss and gse), CHN-induced accumulation of β-Amyrin synthase (β-AS) and synthesis of saponin. These results showed that CHN-induced activities of MAPKs were necessary for the CHN-induced saponin synthesis. EGTA and LaCl3 suppressed CHN-induced 39 kD and 42 kD MAPK activities. Ruthenium red (RR) could suppress CHN-induced 39 kD activity. All of them suppressed CHN-induced saponin synthesis. These results indicated that CHN-induced increment of cytosolic calcium was necessary for CHN-induced saponin synthesis. PD98059 also suppressed CHN-induced oxidative burst (including the increment of activity of plasma membrane NADPH oxidase and production of H2O2), but diphenylene iodonium (DPI), dimethylthiourea (DMTU) and 2,5-dihydroxycinnamic acid methyl ester (DHC) could not suppress CHN-induced MAPK activities, which indicated that MAPK was possibly function upstream of CHN-induced oxidative burst. Keywords mitogen-activated protein kinase - chitosan - saponin