Let f be a holomorphic function on the unit polydisc Dn,with Taylor expansion f(z) = ∞ |k|=0 akzk ≡∞ (k1+···+kn=0) (ak1,···,kn zk1 1znkn)where k = (k1, , kn) ∈ Z+n. The authors define...Let f be a holomorphic function on the unit polydisc Dn,with Taylor expansion f(z) = ∞ |k|=0 akzk ≡∞ (k1+···+kn=0) (ak1,···,kn zk1 1znkn)where k = (k1, , kn) ∈ Z+n. The authors define generalized Hilbert operator on Dn by Hγ,n(f)(z) = ∞ |k|=0 i1,···,in≥0 ai1,···,in n j=1 Γ(γj + kj + 1)Γ(kj + ij + 1) Γ(kj + 1)Γ(kj + ij + γj + 2) zk,where γ∈ Cn, such that R γj > -1, j = 1, 2, , n. An upper bound for the norm of the operator on Hardy spaces Hp(Dn) is found. The authors also present a Fejér-Riesz type inequalit...展开更多
基金Supported by the NNSF of China(10671115)+2 种基金 grants from Specialized Research Fund for the doctoral program of Higher Education(20060560002) NSF of Guangdong Province(7300614)
文摘Let f be a holomorphic function on the unit polydisc Dn,with Taylor expansion f(z) = ∞ |k|=0 akzk ≡∞ (k1+···+kn=0) (ak1,···,kn zk1 1znkn)where k = (k1, , kn) ∈ Z+n. The authors define generalized Hilbert operator on Dn by Hγ,n(f)(z) = ∞ |k|=0 i1,···,in≥0 ai1,···,in n j=1 Γ(γj + kj + 1)Γ(kj + ij + 1) Γ(kj + 1)Γ(kj + ij + γj + 2) zk,where γ∈ Cn, such that R γj > -1, j = 1, 2, , n. An upper bound for the norm of the operator on Hardy spaces Hp(Dn) is found. The authors also present a Fejér-Riesz type inequalit...