期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Substrate Selectivity of Glycerol-3-phosphate Acyl Transferase in Rice 被引量:5
1
作者 su-qin zhu hua zhao rong zhou ben-hua ji xiao-yan dan 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第11期1040-1049,共10页
Substrate selectivity of glycerol-3-phosphate acyltransferase (EC 2. 3. 1. 15) of rice (Oryza sativa L.) was explored in a comparative study of acyltransferases from seven plant species. In vitro labeling of acyl ... Substrate selectivity of glycerol-3-phosphate acyltransferase (EC 2. 3. 1. 15) of rice (Oryza sativa L.) was explored in a comparative study of acyltransferases from seven plant species. In vitro labeling of acyl carrier protein (ACP) with ^14C or 3H showed that acyltransferase from chill-sensitive plants, such as rice that uses either oleic (18:1) or palmitic acid (16:0) as acyl donor at comparable rates, displays lower selectivity than the enzyme from chill-resistant plants, such as spinach, which preferentially uses oleic acid (18:1) rather than palmitic acid (16:0) as an acyl donor. This may be a result of the size and character of the substrate-binding pocket of acyltransferase. Homology modeling and protein structure-based sequence alignment of acyltransferases revealed that proteins from either chill-sensitive or chill-tolerant plants shared a highly conserved domain containing the proposed substrate-binding pocket. However, the aligned residues surrounding the substrate-binding pocket are highly heterogeneous and may have an influence mainly on the size of the substrate binding pockets of acyltransferases. The substrate selectivity of acyltransferase of rice can be improved by enlarging the substrate-binding pocket using molecular biological methods. 展开更多
关键词 glycerol-3-phosphate acyt transferase homology modeling RICE substrate selectivity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部