The elaborate regulation of heterostructure interface to accelerate the interfacial charge separation is one of practicable approaches to improve the photocatalytic CO_(2)reduction performance of halide perovskite(HP)...The elaborate regulation of heterostructure interface to accelerate the interfacial charge separation is one of practicable approaches to improve the photocatalytic CO_(2)reduction performance of halide perovskite(HP) materials. Herein, we report an in-situ growth strategy for the construction of 2D CsPbBr_(3)based heterostructure with perovskite oxide(SrTiO_(3)) nanosheet as substrate(CsPbBr_(3)/SrTiO_(3)). Lattice matching and matchable energy band structures between CsPbBr_(3)and SrTiO_(3)endow CsPbBr_(3)/SrTiO_(3)heterostructure with an efficient interfacial charge separation. Moreover, the interfacial charge transfer rate can be further accelerated by etching SrTiO_(3)with NH_(4)F to form flat surface capped with Ti-O bonds. The resultant 2D/2D T-SrTiO_(3)/CsPbBr_(3)heterostructure exhibits an impressive photocatalytic activity for CO_(2)conversion with a CO yield of 120.2 ± 4.9 μmol g^(-1)h^(-1)at the light intensity of 100 m W/cm^(2)and water as electron source, which is about 10 and 7 times higher than those of the pristine SrTiO_(3)and CsPbBr_(3)nanosheets, surpassing the reported halide perovskite-based photocatalysts under the same conditions.展开更多
基金financially supported by the Natural Science Foundation of Tianjin City (No. 17JCJQJC_(4)3800)the National Key R&D Program of China (No. 2017YFA0700104)+1 种基金NSFC (Nos.21931007, U21A20286)the 111 Project of China (No. D17003)。
文摘The elaborate regulation of heterostructure interface to accelerate the interfacial charge separation is one of practicable approaches to improve the photocatalytic CO_(2)reduction performance of halide perovskite(HP) materials. Herein, we report an in-situ growth strategy for the construction of 2D CsPbBr_(3)based heterostructure with perovskite oxide(SrTiO_(3)) nanosheet as substrate(CsPbBr_(3)/SrTiO_(3)). Lattice matching and matchable energy band structures between CsPbBr_(3)and SrTiO_(3)endow CsPbBr_(3)/SrTiO_(3)heterostructure with an efficient interfacial charge separation. Moreover, the interfacial charge transfer rate can be further accelerated by etching SrTiO_(3)with NH_(4)F to form flat surface capped with Ti-O bonds. The resultant 2D/2D T-SrTiO_(3)/CsPbBr_(3)heterostructure exhibits an impressive photocatalytic activity for CO_(2)conversion with a CO yield of 120.2 ± 4.9 μmol g^(-1)h^(-1)at the light intensity of 100 m W/cm^(2)and water as electron source, which is about 10 and 7 times higher than those of the pristine SrTiO_(3)and CsPbBr_(3)nanosheets, surpassing the reported halide perovskite-based photocatalysts under the same conditions.