Two stereomers of bisadduct analogues of [6, 6]-phenyl-C71-butyric acid methyl ester (bisPC71BM) were synthesized and their geometrical structures with cis- or trans-configuration were identified by X-ray crystallog...Two stereomers of bisadduct analogues of [6, 6]-phenyl-C71-butyric acid methyl ester (bisPC71BM) were synthesized and their geometrical structures with cis- or trans-configuration were identified by X-ray crystallogra- phy. Although both of the bisPC71BM have similar spec- trometric and electrochemical properties, the spatial orientation of the two addition groups on C7o has impact on crystal packing and molecular assembly of bisPC71BM isomers and, in turn, photovoltaic performance in polymer solar cell based on poly(3-hexylthiophene) (P3HT) (with power conversion efficiency of 1.72 % and 1.84 % for the solar cells involving cis- and trans-bisPC71BM, respec- tively). Although the power conversion efficiency remains to be improved, this work exemplifies that the photovoltaic properties of fullerene-based electron acceptors areinfluenced by aggregation of the stereomeric molecules and thus extends the guidelines for rational design of efficient fullerene acceptor.展开更多
In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,name...In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,namely1-(p-benzoate-(p-methylvinylbenzene)-indolino[2,3][60]fullerene(FPPS),was readily synthesized from commercially available building blocks in two steps.This FPPS was employed as an interfacial modifier on perovskite surfaces in inverted planar p-i-n PSCs.Owing to the fast interfacial charge extraction and efficient trap passivation,PSCs based on the cross-linked FPPS(C-FPPS)exhibited excellent performance.The PSCs had a top-performing power conversion efficiency(PCE)of 17.82%with negligible hysteresis,compared to the control devices without C-PFFS(16.99%).Moreover,the strong water resistance of the C-FPPS interfacial layer distinctly enhances the ambient stability of PSC devices,exhibiting a t80(the time required to reach 80%of the initial PCE)of 300 h under high-humidity conditions.This significantly surpasses the control devices,whose t80 was only 130 h.These results demonstrate that cross-linkable fullerene derivatives can be promising interfacial materials for designing high-efficiency,hysteresis-free,air-stable PSCs.展开更多
Gaseous compounds are usually on-line detectable on sensors. The limitations of conventional sensors are suffering from incapability for exactly identifying multiple components as well as incompatibility to possible t...Gaseous compounds are usually on-line detectable on sensors. The limitations of conventional sensors are suffering from incapability for exactly identifying multiple components as well as incompatibility to possible toxicants in every odor sample. Herein, we discuss an inlet modification to the laboratory standard mass spectrometer, inspired by the sensitive olfactory systems of animals, for direct sniffing,established by connecting a mini pump to the nebulizer gas tubing. The modified mass spectrometry method—sniffing-mass spectrometry(sniffing-MS)—can acquire detailed fingerprint spectra of mixed odors and shows high tolerance to toxicants. Furthermore, the method has a low limit of detection in the order of parts per trillion and is a ‘sampling-free' technique for analyzing various gaseous compounds simultaneously, thus offering versatility for smelling daily commodities, tracking diffusion, and locating position of odors. Sniffing-MS can mimic or even surpass the olfaction of animals and is applicable for analyzing gaseous/volatile compounds, especially those polar compounds, in a simple manner depending on the intrinsic molecular mass-to-charge ratio.展开更多
Because of its unsaturated bonds,C_(60) is susceptible to polymerize into dimers.The implications of nitrogen doping on the geometrical and electronic structure of C_(60) dimers have been ambiguous for years.A quarter...Because of its unsaturated bonds,C_(60) is susceptible to polymerize into dimers.The implications of nitrogen doping on the geometrical and electronic structure of C_(60) dimers have been ambiguous for years.A quarter-century after the discovery of azafullerene dimer(C_(59)N)_(2),we reported its single crystallographic structure in 2019.展开更多
The precise identification of metal-metal bonds is critical to fully understanding the nature of metal-metal bonding but remains a fundamental challenge.Herein,we show the essence of Sc-Sc bonds with a metal-metal dis...The precise identification of metal-metal bonds is critical to fully understanding the nature of metal-metal bonding but remains a fundamental challenge.Herein,we show the essence of Sc-Sc bonds with a metal-metal distance of 3.36 Å in a C_(3v)(8)-C_(82) fullerene cage using crystallography.展开更多
基金supported by the National Basic Research Program of China(2014CB845601)the National Natural Science Foundation of China(U1205111+3 种基金2139039051572231and51502252)the Fundamental Research Funds for the Central Universities(20720140512)
文摘Two stereomers of bisadduct analogues of [6, 6]-phenyl-C71-butyric acid methyl ester (bisPC71BM) were synthesized and their geometrical structures with cis- or trans-configuration were identified by X-ray crystallogra- phy. Although both of the bisPC71BM have similar spec- trometric and electrochemical properties, the spatial orientation of the two addition groups on C7o has impact on crystal packing and molecular assembly of bisPC71BM isomers and, in turn, photovoltaic performance in polymer solar cell based on poly(3-hexylthiophene) (P3HT) (with power conversion efficiency of 1.72 % and 1.84 % for the solar cells involving cis- and trans-bisPC71BM, respec- tively). Although the power conversion efficiency remains to be improved, this work exemplifies that the photovoltaic properties of fullerene-based electron acceptors areinfluenced by aggregation of the stereomeric molecules and thus extends the guidelines for rational design of efficient fullerene acceptor.
基金the National Natural Science Foundation of China(Nos.21721001,51572231 and 51502252)the Natural Science Foundation of Fujian Province of China(No.2016J01264)。
文摘In situ cross-linking encapsulation has been demonstrated to be an efficient strategy for enhancing the humidity stability of perovskite solar cells(PSCs).In this study,a novel cross-linkable fullerene derivative,namely1-(p-benzoate-(p-methylvinylbenzene)-indolino[2,3][60]fullerene(FPPS),was readily synthesized from commercially available building blocks in two steps.This FPPS was employed as an interfacial modifier on perovskite surfaces in inverted planar p-i-n PSCs.Owing to the fast interfacial charge extraction and efficient trap passivation,PSCs based on the cross-linked FPPS(C-FPPS)exhibited excellent performance.The PSCs had a top-performing power conversion efficiency(PCE)of 17.82%with negligible hysteresis,compared to the control devices without C-PFFS(16.99%).Moreover,the strong water resistance of the C-FPPS interfacial layer distinctly enhances the ambient stability of PSC devices,exhibiting a t80(the time required to reach 80%of the initial PCE)of 300 h under high-humidity conditions.This significantly surpasses the control devices,whose t80 was only 130 h.These results demonstrate that cross-linkable fullerene derivatives can be promising interfacial materials for designing high-efficiency,hysteresis-free,air-stable PSCs.
基金supported by the National Basic Research Program of China(2014CB845601)the National Natural Science Foundation of China(21721001,51572231,and 21390390)
文摘Gaseous compounds are usually on-line detectable on sensors. The limitations of conventional sensors are suffering from incapability for exactly identifying multiple components as well as incompatibility to possible toxicants in every odor sample. Herein, we discuss an inlet modification to the laboratory standard mass spectrometer, inspired by the sensitive olfactory systems of animals, for direct sniffing,established by connecting a mini pump to the nebulizer gas tubing. The modified mass spectrometry method—sniffing-mass spectrometry(sniffing-MS)—can acquire detailed fingerprint spectra of mixed odors and shows high tolerance to toxicants. Furthermore, the method has a low limit of detection in the order of parts per trillion and is a ‘sampling-free' technique for analyzing various gaseous compounds simultaneously, thus offering versatility for smelling daily commodities, tracking diffusion, and locating position of odors. Sniffing-MS can mimic or even surpass the olfaction of animals and is applicable for analyzing gaseous/volatile compounds, especially those polar compounds, in a simple manner depending on the intrinsic molecular mass-to-charge ratio.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21827801,21721001,21771152 and 91961113)the China Postdoctoral Science Foundation(No.2020M671940).
文摘Because of its unsaturated bonds,C_(60) is susceptible to polymerize into dimers.The implications of nitrogen doping on the geometrical and electronic structure of C_(60) dimers have been ambiguous for years.A quarter-century after the discovery of azafullerene dimer(C_(59)N)_(2),we reported its single crystallographic structure in 2019.
基金Financial support for this research was provided by the National Natural Science Foundation of China(nos.92061204,21771152,and 21721001).
文摘The precise identification of metal-metal bonds is critical to fully understanding the nature of metal-metal bonding but remains a fundamental challenge.Herein,we show the essence of Sc-Sc bonds with a metal-metal distance of 3.36 Å in a C_(3v)(8)-C_(82) fullerene cage using crystallography.