The purpose of this investigation was to evaluate the microstructure,high-temperature oxidation behaviour,and hardness of a seal coating under controlled exposures at 750℃with different exposure times.The results rev...The purpose of this investigation was to evaluate the microstructure,high-temperature oxidation behaviour,and hardness of a seal coating under controlled exposures at 750℃with different exposure times.The results reveal that the main phases in the coating are Ni,FeNi3,and hexagonal BN,withα-Al_(2)O_(3)peaks appearing after 2-h oxidation.As the exposure time increases,the diffraction peak intensity ofα-Al_(2)O_(3)begins to decrease and Cr_(2)O_(3)peaks appear after 200 h.After 1000 h,Cr_(2)O_(3)becomes dominant with only small amounts ofα-Al_(2)O_(3)remaining.The high-temperature oxidation process of the coating includes three stages:the fast stage,transition stage,and slow stage.The oxidation rate is constant in each stage,and in the fast stage and slow stages with values of7.9×10^(-4)and 8.37×10^(-5)mg^(2)·cm^(-4)·s^(-1),respectively.Initially,α-Al_(2)O_(3)forms near the pores in the coating,followed by the formation of Cr_(2)O_(3).As the exposure time increases,oxidation penetrates into the interior of the coating along phase boundaries to form island-shaped inner oxide layers with high concentrations of Cr,Ni,and Fe.Additionally,hardness increases with increasing oxide percentage.展开更多
Friction stir welding was applied to Ti-6 A1-4 V plates with 5 mm in thickness.The microstructure and mechanical properties were investigated.A full lamellar microstructure was developed near the top surface,and the s...Friction stir welding was applied to Ti-6 A1-4 V plates with 5 mm in thickness.The microstructure and mechanical properties were investigated.A full lamellar microstructure was developed near the top surface,and the size of priorβgrain gradually decreases as the distance from the top surface increases.The microstructure of the bottom is fine equiaxed a grains,and the mean size is2μm.A mixture microstructure consisting of primary a,lamellarα+βand fine equiaxedαis discovered in thermomechanically affected zone(TMAZ).Results of transverse tensile test show that the tensile strength of the joint reaches 98%that of the base material(BM).Quasi-static compression test shows that the joint exhibits larger compressive strength and failure strain than the BM.Dynamic compressive strength of the joint is close to that of the BM;furthermore,the strain at the peak stress and energy absorption of the joint are larger than those of the BM.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51571031)。
文摘The purpose of this investigation was to evaluate the microstructure,high-temperature oxidation behaviour,and hardness of a seal coating under controlled exposures at 750℃with different exposure times.The results reveal that the main phases in the coating are Ni,FeNi3,and hexagonal BN,withα-Al_(2)O_(3)peaks appearing after 2-h oxidation.As the exposure time increases,the diffraction peak intensity ofα-Al_(2)O_(3)begins to decrease and Cr_(2)O_(3)peaks appear after 200 h.After 1000 h,Cr_(2)O_(3)becomes dominant with only small amounts ofα-Al_(2)O_(3)remaining.The high-temperature oxidation process of the coating includes three stages:the fast stage,transition stage,and slow stage.The oxidation rate is constant in each stage,and in the fast stage and slow stages with values of7.9×10^(-4)and 8.37×10^(-5)mg^(2)·cm^(-4)·s^(-1),respectively.Initially,α-Al_(2)O_(3)forms near the pores in the coating,followed by the formation of Cr_(2)O_(3).As the exposure time increases,oxidation penetrates into the interior of the coating along phase boundaries to form island-shaped inner oxide layers with high concentrations of Cr,Ni,and Fe.Additionally,hardness increases with increasing oxide percentage.
基金financially supported by the National Natural Science Foundation of China(No.51571031).
文摘Friction stir welding was applied to Ti-6 A1-4 V plates with 5 mm in thickness.The microstructure and mechanical properties were investigated.A full lamellar microstructure was developed near the top surface,and the size of priorβgrain gradually decreases as the distance from the top surface increases.The microstructure of the bottom is fine equiaxed a grains,and the mean size is2μm.A mixture microstructure consisting of primary a,lamellarα+βand fine equiaxedαis discovered in thermomechanically affected zone(TMAZ).Results of transverse tensile test show that the tensile strength of the joint reaches 98%that of the base material(BM).Quasi-static compression test shows that the joint exhibits larger compressive strength and failure strain than the BM.Dynamic compressive strength of the joint is close to that of the BM;furthermore,the strain at the peak stress and energy absorption of the joint are larger than those of the BM.