期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Study of engineering electronic structure modulated non-noble metal oxides for scaled-up alkaline blend seawater splitting
1
作者 Natarajan Logeshwaran subramanian vijayapradeep +5 位作者 Ae Rhan Kim Prabhakaran Sampath Shanmugam Ramakrishnan Milan Babu Poudel Do Hwan Kim Dong Jin Yoo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期167-179,I0004,共14页
Scaled-up industrial water electrolysis equipment that can be used with abundant seawater is key for affordable hydrogen production.The search for highly stable,dynamic,and economical electrocatalysts could have a sig... Scaled-up industrial water electrolysis equipment that can be used with abundant seawater is key for affordable hydrogen production.The search for highly stable,dynamic,and economical electrocatalysts could have a significant impact on hydrogen commercialization.Herein,we prepared energy-efficient,scalable,and engineering electronic structure modulated Mn-Ni bimetal oxides(Mn_(0.25)Ni_(0.75)O)through simple hydrothermal followed by calcination method.As-optimized Mn_(0.25)Ni_(0.75)O displayed enhanced oxygen and hydrogen evolution reaction(OER and HER)performance with overpotentials of 266 and115 mV at current densities of 10 mA cm^(-2)in alkaline KOH added seawater electrolyte solution.Additionally,Mn-Ni oxide catalytic benefits were attributed to the calculated electronic configurations and Gibbs free energy for OER,and HER values were estimated using first principles calculations.In real-time practical application,we mimicked industrial operating conditions with modified seawater electrolysis using Mn_(0.25)Ni_(0.75)O‖Mn_(0.25)Ni_(0.75)O under various temperature conditions,which performs superior to the commercial IrO_(2)‖Pt-C couple.These findings demonstrate an inexpensive and facile technique for feasible large-scale hydrogen production. 展开更多
关键词 Waterel ectrolysis Mn-Ni oxide complex Chlorine evolution reaction Industrial seawater operations Density functional theory calculations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部