期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving the performance of a thermoelectric power system using a flat-plate heat pipe 被引量:6
1
作者 suchen wu Yiwen Ding +1 位作者 Chengbin Zhang Dehao Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期44-53,共10页
A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimen... A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation. 展开更多
关键词 THERMOELECTRIC HEAT PIPE HEAT SPREADER Power generation
下载PDF
Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins 被引量:3
2
作者 Zilong Deng suchen wu +1 位作者 Hao Xu Yongping Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2857-2871,共15页
The latent heat storage(LHS)technique is of crucial importance in chemical energy engineering.Inspired by multi-bifurcated fern leaves,a mimic fern-fractal fin is designed to improve the thermal energy charging effici... The latent heat storage(LHS)technique is of crucial importance in chemical energy engineering.Inspired by multi-bifurcated fern leaves,a mimic fern-fractal fin is designed to improve the thermal energy charging efficiency.This paper develops a transient melting model of a rectangular LHS unit using fern-fractal fins,and their melting behaviors are compared with the conventional fins.Besides,a parametric optimization of fernfractal fins is conducted for maximizing the thermal efficiency based on the response surface method(RSM).The results indicate that the temperature uniformity is more superior and the melting duration is shorter for the fern-fractal LHS unit when compared with the conventional one.Interestingly,the fern-fractal LHS device presents a slower heat storage rate during the initial conduction-dominated and early convection-dominated melting stages,while a prominent melting enhancement is achieved during the later melting stage.The shortest melting time is obtained based on the RSM technique when a fern-fractal fin with length ratio α=0.94 and branch angle θ=54.7°is utilized.Compared with a conventional fin,the averaged heat storage rate increases by 88.3%,and the total melting time is declined by 40.3%for an optimized fern-fractal fin. 展开更多
关键词 Multiscale FRACTAL Numerical simulation Heat storage Optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部