Let the numbers be defined by , where and are the exponential complete Bell polynomials. In this paper, by means of the methods of Riordan arrays, we establish general identities involving the numbers , binomial coeff...Let the numbers be defined by , where and are the exponential complete Bell polynomials. In this paper, by means of the methods of Riordan arrays, we establish general identities involving the numbers , binomial coefficients and inverse of binomial coefficients. From these identities, we deduce some identities involving binomial coefficients, Harmonic numbers and the Euler sum identities. Furthermore, we obtain the asymptotic values of some summations associated with the numbers by Darboux’s method.展开更多
文摘Let the numbers be defined by , where and are the exponential complete Bell polynomials. In this paper, by means of the methods of Riordan arrays, we establish general identities involving the numbers , binomial coefficients and inverse of binomial coefficients. From these identities, we deduce some identities involving binomial coefficients, Harmonic numbers and the Euler sum identities. Furthermore, we obtain the asymptotic values of some summations associated with the numbers by Darboux’s method.