Although numerous hypotheses have been proposed to explain the patterns of species diversity of forests at local and landscape levels,it is still difficult to predict the alpha diversity of species,especially in tropi...Although numerous hypotheses have been proposed to explain the patterns of species diversity of forests at local and landscape levels,it is still difficult to predict the alpha diversity of species,especially in tropical and subtropical natural forests where trees of different sizes and shapes are highly mixed.Size might characterize species diversity,and the possible correlation between these variables may contribute to the development of easy-to-use growth indicators to predict diversity and to understand the status of trees within a stand.In this study,diameter classes were divided using the equal diameter class(EDC)and minimum measured diameter(MMD)methods,and five species diversity indices were calculated for each diameter class of 14 permanent plots in five national nature reserves surrounding the Tropic of Cancer(23.5°),southwest China.The results show that species richness,abundance,and spatial diversity indices decreased in a typical inverted J-shape pattern with increasing diameter class and MMD,and could be easily modeled by a negative exponential function.The ShannonWiener index showed a linear decrease while Pielou’s evenness index displayed a linear increase,with a small degree of instability.The results suggest that species diversity in subtropical forests is closely related to tree size,and the relationship is possibly independent of habitat.Measuring DBH of some trees in a stand could be informative regarding species diversity and contribute to the investigation and assessment of biodiversity.展开更多
The canopy of subtropical natural forests usually consists of several co-dominant populations(CDPs),which play a crucial role in forest structure,formation of the forest environment,and ecological function.However,lit...The canopy of subtropical natural forests usually consists of several co-dominant populations(CDPs),which play a crucial role in forest structure,formation of the forest environment,and ecological function.However,little attention has been given to changes in spatial patterns in CDPs during natural succession.Cyclobalanopsis glauca(Thunb.)Oerst.,Quercus variabilis Blume,and Pinus yunnanensis var.tenuifolia W.C.Cheng & Y.W.Law are canopy species that form CDPs in zonal forests along the Nanpan River in southwest China.We used the g(r) function and its bivariate distribution model,g_(12)(r),which is based on distances between pairs of points,to explore the dynamics of the three CDP species with respect to distribution patterns and spatial correlations in two secondary forests(one 30-year-old forest [30-YF] and one 57-year-old forest [57-YF]).The following key results were obtained:(1) there was a clumped pattern in the 30-YF,but the intensity of aggregation varied among populations and life stages.The distribution pattern gradually shifted to become random with longer succes sion time(i.e.,30-YF vs.57-YF),expansion of the observation scale(r=0-20 m),and at later life stages.(2) Aside from the mid-sized C.glauca trees and large P.yunnanensis trees,the trees repulsed each other at certain scales(r=0-2,5-6,11-12,14-16 m) in the 30-YF.Almost all of the life stages in the CDPs were independently correlated.This independent correlation was exacerbated by a longer succession time.(3) An increase in life stages and longer succession also promoted independent changes in intraspecific correlations.(4) Intraspecific correlations were stronger than interspecific correlations.Our results showed that reducing exclusive competition is essential to coexistence in CDPs.Inter-and intra-specific repulsion may occur at the same time,but intraspecific repulsion was the main driving force behind the random distributions and independent correlations.展开更多
Thinning is an important activity employed in forest management. To date, studies have mainly focused on the effects of thinning on the growth of trees during the same thinning period. In this study, plantation Pinus ...Thinning is an important activity employed in forest management. To date, studies have mainly focused on the effects of thinning on the growth of trees during the same thinning period. In this study, plantation Pinus massoniana Lamb. near maturity were thinned at varying intensities and an economically important species, Cinnamomum cassia Presl., was planted beneath the thinned canopy. The aim of the study was to explore the effects of the extent of thinning on the essential oil content and its components of C. cassia in different parts of the plant, as well as the economic feasibility of the P. massoniana-C.cassia management model. Thinning significantly reduced the oil yield in the bark and branches of C. cassia, but hardly impacted the oil yield from C. cassia leaves compared with pure C. cassia forest(CK). Among the different thinning treatments, both light(T.4) and extensive(T.1)thinning reduced the oil yield of C. cassia bark and new branches. The concentrations of the main aldehydes differed in different parts of the plant and were affected by the extent of thinning. The influence on cinnamaldehyde in the bark was minor, but was much greater in the branches and leaves. Both the oil yield and content of cinnamaldehyde showed that moderate(T.3) thinning was more favorable than other thinning models. These results not only provide a potentially promising model for the transformation of low-yield artificial pure forests of P. massoniana in the future, but also offer a reference for the management of artificial mixed stands.展开更多
基金supported by the Open Foundation of Guangxi Key Laboratory of Forest Ecology and Conservation(Grant No.20221203)National Natural Science Foundation of China(Grant No.32060340)+1 种基金Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi under(Grant No.22-035-130-01)the Guangxi Key Research and Development Program(Grant No.Guike AB16380254)。
文摘Although numerous hypotheses have been proposed to explain the patterns of species diversity of forests at local and landscape levels,it is still difficult to predict the alpha diversity of species,especially in tropical and subtropical natural forests where trees of different sizes and shapes are highly mixed.Size might characterize species diversity,and the possible correlation between these variables may contribute to the development of easy-to-use growth indicators to predict diversity and to understand the status of trees within a stand.In this study,diameter classes were divided using the equal diameter class(EDC)and minimum measured diameter(MMD)methods,and five species diversity indices were calculated for each diameter class of 14 permanent plots in five national nature reserves surrounding the Tropic of Cancer(23.5°),southwest China.The results show that species richness,abundance,and spatial diversity indices decreased in a typical inverted J-shape pattern with increasing diameter class and MMD,and could be easily modeled by a negative exponential function.The ShannonWiener index showed a linear decrease while Pielou’s evenness index displayed a linear increase,with a small degree of instability.The results suggest that species diversity in subtropical forests is closely related to tree size,and the relationship is possibly independent of habitat.Measuring DBH of some trees in a stand could be informative regarding species diversity and contribute to the investigation and assessment of biodiversity.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFC0502101-04)the Guangxi Key Research and Development Program (Grant No.Guike AB163 80254)+1 种基金the National Science Foundation of China (Grant No.31400542)Guangxi Special Fund Project for Innovation-driven Development (Grant No.AA 17204087-8)。
文摘The canopy of subtropical natural forests usually consists of several co-dominant populations(CDPs),which play a crucial role in forest structure,formation of the forest environment,and ecological function.However,little attention has been given to changes in spatial patterns in CDPs during natural succession.Cyclobalanopsis glauca(Thunb.)Oerst.,Quercus variabilis Blume,and Pinus yunnanensis var.tenuifolia W.C.Cheng & Y.W.Law are canopy species that form CDPs in zonal forests along the Nanpan River in southwest China.We used the g(r) function and its bivariate distribution model,g_(12)(r),which is based on distances between pairs of points,to explore the dynamics of the three CDP species with respect to distribution patterns and spatial correlations in two secondary forests(one 30-year-old forest [30-YF] and one 57-year-old forest [57-YF]).The following key results were obtained:(1) there was a clumped pattern in the 30-YF,but the intensity of aggregation varied among populations and life stages.The distribution pattern gradually shifted to become random with longer succes sion time(i.e.,30-YF vs.57-YF),expansion of the observation scale(r=0-20 m),and at later life stages.(2) Aside from the mid-sized C.glauca trees and large P.yunnanensis trees,the trees repulsed each other at certain scales(r=0-2,5-6,11-12,14-16 m) in the 30-YF.Almost all of the life stages in the CDPs were independently correlated.This independent correlation was exacerbated by a longer succession time.(3) An increase in life stages and longer succession also promoted independent changes in intraspecific correlations.(4) Intraspecific correlations were stronger than interspecific correlations.Our results showed that reducing exclusive competition is essential to coexistence in CDPs.Inter-and intra-specific repulsion may occur at the same time,but intraspecific repulsion was the main driving force behind the random distributions and independent correlations.
基金supported by the key technology for the management of artificial multi-layers plantation(2006–2009)the interspecific nitrogen transfer behaviors and root interaction mechanism of Eucalyptus and Dalbergia odorifera T.Chen(31460196)the key technology for the management of Strified Mixed Stands of Pinus massoniana and Cinnamomum cassia(2014–2024)
文摘Thinning is an important activity employed in forest management. To date, studies have mainly focused on the effects of thinning on the growth of trees during the same thinning period. In this study, plantation Pinus massoniana Lamb. near maturity were thinned at varying intensities and an economically important species, Cinnamomum cassia Presl., was planted beneath the thinned canopy. The aim of the study was to explore the effects of the extent of thinning on the essential oil content and its components of C. cassia in different parts of the plant, as well as the economic feasibility of the P. massoniana-C.cassia management model. Thinning significantly reduced the oil yield in the bark and branches of C. cassia, but hardly impacted the oil yield from C. cassia leaves compared with pure C. cassia forest(CK). Among the different thinning treatments, both light(T.4) and extensive(T.1)thinning reduced the oil yield of C. cassia bark and new branches. The concentrations of the main aldehydes differed in different parts of the plant and were affected by the extent of thinning. The influence on cinnamaldehyde in the bark was minor, but was much greater in the branches and leaves. Both the oil yield and content of cinnamaldehyde showed that moderate(T.3) thinning was more favorable than other thinning models. These results not only provide a potentially promising model for the transformation of low-yield artificial pure forests of P. massoniana in the future, but also offer a reference for the management of artificial mixed stands.