期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
An analytic model for transient heat conduction in bi-layered structures with flexible serpentine heaters
1
作者 Zhao ZHAO Yuhang LI +2 位作者 sujun dong Yi CUI Zheng DAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1279-1296,共18页
Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heati... Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heating film is proposed with the flexible serpentine wire embedded in the soft polymer film,which can be attached to non-developable surfaces conformally.It provides a new way for the stretchable heaters to realize uniform heating of complex surfaces.However,the thermal field of flexible serpentine heaters(FSHs)depends on the configurations of the embedded serpentine heating wire,which requires accurate theoretical prediction of real-time temperature distribution.Therefore,the analytical model for the transient heat conduction in FSHs is solved by the separation of variables method and validated by the finite element analysis(FEA)in this paper.Based on this model,the effects of the geometric parameters,such as the radius and the length of the serpentine heaters,on the thermal uniformity are systematically investigated.This study can help to design and fabricate flexible heaters with uniform heating in the future. 展开更多
关键词 serpentine heater bi-layered structure transient heat conduction temperature distribution
下载PDF
A new algorithm of global tightly-coupled transient heat transfer based on quasi-steady flow to the conjugate heat transfer problem
2
作者 Fanchao Meng sujun dong +1 位作者 Jun Wang Dechun Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期233-235,共3页
Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further pu... Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions. 展开更多
关键词 Conjugate heat transfer Loosely-coupledQuasi-steady Computational fluid dynamics
下载PDF
Simulation of an aircraft thermal management system based on vapor cycle response surface model
3
作者 Haodong LIU Hongsheng JIANG +3 位作者 sujun dong Longxian XUE Yongji LIU Jianjun WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期64-77,共14页
The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o... The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design. 展开更多
关键词 Thermal management sys-tem Vaporcycle Response surface model Dynamic simulation MONTECARLO
原文传递
Optimization on conventional and electric air-cycle refrigeration systems of aircraft: A short-cut method and analysis 被引量:6
4
作者 Hongsheng JIANG sujun dong +3 位作者 Hainan ZHANG Fengming AI Zhiwei ZHANG Jun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第7期1877-1888,共12页
The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization meth... The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization method.In this paper,a short-cut optimization method with high efficiency and effectiveness is introduced for both conventional and electric air-cycle refrigeration systems.Based on the system characteristics,a four-layer parameter matching algorithm is designed which avoids computational difficulty caused by simultaneous equations.Fuel penalty is chosen as the objective function of optimization;design variables are reduced based on sensitivity analysis to improve optimization efficiency.The results show that the 3-variable optimization of the conventional air-cycle refrigeration system can obtain almost the same results as the traditional 6-variable optimization in that these two optimizations can both significantly reduce the fuel penalty.However,the computer running time of the 3-variable optimization is much shorter than that of the 6-variable optimization.The optimal fuel penalty of the electric air-cycle refrigeration system is lower than that of the conventional one.This study can provide reference for optimizing the aircycle refrigeration system of aircraft. 展开更多
关键词 AIRCRAFT Air-cycle refrigeration Electric air-cycle refrigeration Parameter matching Sensitivity analysis
原文传递
Experimental investigation on operating behaviors of loop heat pipe with thermoelectric cooler under acceleration conditions 被引量:2
5
作者 Yongqi XIE Xinyu LI +2 位作者 sujun dong Hongxing ZHANG Hongwei WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期852-860,共9页
An experimental study was carried out in this article to investigate the transient operating performance of a Dual Compensation Chamber Loop Heat Pipe(DCCLHP) with Thermoelectric Cooler(TEC) under acceleration conditi... An experimental study was carried out in this article to investigate the transient operating performance of a Dual Compensation Chamber Loop Heat Pipe(DCCLHP) with Thermoelectric Cooler(TEC) under acceleration conditions and ammonia was selected as the working fluid.For the purpose of comparison, experimental work was conducted under terrestrial gravity.Sensitivity analysis was performed to explore the effect of several control parameters such as the heat load, acceleration magnitude and TEC assist on the startup and operating performance of the DCCLHP.Experimental results indicate that the DCCLHP can get to a steady-state operation when the heat load changes from 25 W to 300 W under terrestrial gravity.While under acceleration conditions, the DCCLHP can work at a high operating temperature or even fail to operate, which shows the acceleration effect plays a significant impact on the loop operation.The TEC assist with power of 10 W can improve the operating performance and reduce the operating temperature for the case of small heat load and acceleration magnitude.When the acceleration exceeds 3 g at large heat load, the effect of TEC assist on the operation at large heat load can be ignored. 展开更多
关键词 ACCELERATION Electronic cooling Loop heat pipe Operating performance Thermoelectric cooler
原文传递
Experimental investigation on boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels subjected to an acceleration force 被引量:1
6
作者 sujun dong Hongsheng JIANG +3 位作者 Yongqi XIE Xiaoming WANG Zhongliang HU Jun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第5期1136-1144,共9页
Experiments were carried out to investigate the boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels under terrestrial gravity and acceleration fields. A centrifuge with a two-meter... Experiments were carried out to investigate the boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels under terrestrial gravity and acceleration fields. A centrifuge with a two-meter long rotational arm was used to simulate the acceleration magnitude up to 9 g and three various acceleration directions. Three test sections with different geometric parameters were applied. The volume concentration of Al_2O_3 nanoparticles with an average diameter of 13 nm was varied from 0.07% to 0.1%. The mass flow rate and vapor quality were in ranges of 3–6 kg/h and 0.4–1.0%, respectively. The effects of the mass flow rate, microchannel aspect ratio,vapor quality, nanoparticle volume concentration, and acceleration direction and magnitude were analyzed in a systematic manner. Experimental results showed that the acceleration direction and magnitude had significant influences on the boiling heat transfer. The heat transfer under configuration C was found to be superior to that under configurations A and B. Moreover, the heat transfer coefficient increased with increases of the mass flow rate and the volume concentration and decreased with the aspect ratio. 展开更多
关键词 ACCELERATION BOILING heat transfer MICROCHANNEL NANOFLUID SWIRL microchannels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部