Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of...Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of sulfur,shuttling of soluble intermediate polysulfides between electrodes,and low capacitretention have hampered their commercial use.To address these issues,we use a halloysitemodulated(H-M)separator in a lithium–sulfur battery to mitigate the shuttling problem.The H-M separator acts as a mutual Coulombic repulsion in lithium-sulfur batteries,thereby selectively permitting Lions and efficiently suppressing the transfer of undesired lithium polysulfides to the Li anode sideMoreover,the use of halloysite switches the surface of the separator from hydrophobic to hydrophilicconsequently improving the electrolyte wettability and adhesion between the separator and cathodeWhen sulfur-multi-walled carbon nanotube(S-MWCNT)composites are used as cathode active materialsa lithium–sulfur battery with an H-M separator exhibits first discharge and charge capacities of 1587 an1527 m Ah g-1,respectively.Moreover,there is a consistent capacity retention up to 100 cyclesAccordingly,our approach demonstrates an economical and easily accessible strategy for commercialization of lithium–sulfur batteries.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1C1B6004689)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A306182111)the Electronics and Telecommunications Research Institute(ETRI)grant funded by the Korean government(21ZB1200,Development of ICT Materials,Components and Equipment Technologies)。
文摘Lithium–sulfur batteries are one of the attractive next-generation energy storage systems owing to theienvironmental friendliness,low cost,and high specific energy densities.However,the low electrical conductivity of sulfur,shuttling of soluble intermediate polysulfides between electrodes,and low capacitretention have hampered their commercial use.To address these issues,we use a halloysitemodulated(H-M)separator in a lithium–sulfur battery to mitigate the shuttling problem.The H-M separator acts as a mutual Coulombic repulsion in lithium-sulfur batteries,thereby selectively permitting Lions and efficiently suppressing the transfer of undesired lithium polysulfides to the Li anode sideMoreover,the use of halloysite switches the surface of the separator from hydrophobic to hydrophilicconsequently improving the electrolyte wettability and adhesion between the separator and cathodeWhen sulfur-multi-walled carbon nanotube(S-MWCNT)composites are used as cathode active materialsa lithium–sulfur battery with an H-M separator exhibits first discharge and charge capacities of 1587 an1527 m Ah g-1,respectively.Moreover,there is a consistent capacity retention up to 100 cyclesAccordingly,our approach demonstrates an economical and easily accessible strategy for commercialization of lithium–sulfur batteries.