The fast acceptance of cloud technology to industry explains increasing energy conservation needs and adoption of energy aware scheduling methods to cloud. Power consumption is one of the top of mind issues in cloud, ...The fast acceptance of cloud technology to industry explains increasing energy conservation needs and adoption of energy aware scheduling methods to cloud. Power consumption is one of the top of mind issues in cloud, because the usage of cloud storage by the individuals or organization grows rapidly. Developing an efficient power management processor architecture has gained considerable attention. However, the conventional power management mechanism fails to consider task scheduling policies. Therefore, this work presents a novel energy aware framework for power management. The proposed system leads to the development of Inclusive Power-Cognizant Processor Controller (IPCPC) for efficient power utilization. To evaluate the performance of the proposed method, simulation experiments inputting random tasks as well as tasks collected from Google Trace Logs were conducted to validate the supremacy of IPCPC. The research based on Real world Google Trace Logs gives results that proposed framework leads to less than 9% of total power consumption per task of server which proves reduction in the overall power needed.展开更多
Wireless sensor network(WSN)is an emerging technology which find useful in several application areas such as healthcare,environmentalmonitoring,border surveillance,etc.Several issues that exist in the designing of WSN...Wireless sensor network(WSN)is an emerging technology which find useful in several application areas such as healthcare,environmentalmonitoring,border surveillance,etc.Several issues that exist in the designing of WSN are node localization,coverage,energy efficiency,security,and so on.In spite of the issues,node localization is considered an important issue,which intends to calculate the coordinate points of unknown nodes with the assistance of anchors.The efficiency of the WSN can be considerably influenced by the node localization accuracy.Therefore,this paper presents a modified search and rescue optimization based node localization technique(MSRONLT)forWSN.The major aim of theMSRO-NLT technique is to determine the positioning of the unknown nodes in theWSN.Since the traditional search and rescue optimization(SRO)algorithm suffers from the local optima problemwith an increase in number of iterations,MSRO algorithm is developed by the incorporation of chaotic maps to improvise the diversity of the technique.The application of the concept of chaotic map to the characteristics of the traditional SRO algorithm helps to achieve better exploration ability of the MSRO algorithm.In order to validate the effective node localization performance of the MSRO-NLT algorithm,a set of simulations were performed to highlight the supremacy of the presented model.A detailed comparative results analysis showcased the betterment of the MSRO-NLT technique over the other compared methods in terms of different measures.展开更多
Peer-to-Peer(P2P)electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer.It also decreases the quantity of line loss incurred in Smart Grid(SG).But,uncertainiti...Peer-to-Peer(P2P)electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer.It also decreases the quantity of line loss incurred in Smart Grid(SG).But,uncertainities in demand and supply of the electricity might lead to instability in P2P market for both prosumer and consumer.In recent times,numerous Machine Learning(ML)-enabled load predictive techniques have been developed,while most of the existing studies did not consider its implicit features,optimal parameter selection,and prediction stability.In order to overcome fulfill this research gap,the current research paper presents a new Multi-Objective Grasshopper Optimisation Algorithm(MOGOA)with Deep Extreme Learning Machine(DELM)-based short-term load predictive technique i.e.,MOGOA-DELM model for P2P Energy Trading(ET)in SGs.The proposed MOGOA-DELM model involves four distinct stages of operations namely,data cleaning,Feature Selection(FS),prediction,and parameter optimization.In addition,MOGOA-based FS technique is utilized in the selection of optimum subset of features.Besides,DELM-based predictive model is also applied in forecasting the load requirements.The proposed MOGOA model is also applied in FS and the selection of optimalDELM parameters to improve the predictive outcome.To inspect the effectual outcome of the proposed MOGOA-DELM model,a series of simulations was performed using UK Smart Meter dataset.In the experimentation procedure,the proposed model achieved the highest accuracy of 85.80%and the results established the superiority of the proposed model in predicting the testing data.展开更多
文摘The fast acceptance of cloud technology to industry explains increasing energy conservation needs and adoption of energy aware scheduling methods to cloud. Power consumption is one of the top of mind issues in cloud, because the usage of cloud storage by the individuals or organization grows rapidly. Developing an efficient power management processor architecture has gained considerable attention. However, the conventional power management mechanism fails to consider task scheduling policies. Therefore, this work presents a novel energy aware framework for power management. The proposed system leads to the development of Inclusive Power-Cognizant Processor Controller (IPCPC) for efficient power utilization. To evaluate the performance of the proposed method, simulation experiments inputting random tasks as well as tasks collected from Google Trace Logs were conducted to validate the supremacy of IPCPC. The research based on Real world Google Trace Logs gives results that proposed framework leads to less than 9% of total power consumption per task of server which proves reduction in the overall power needed.
文摘Wireless sensor network(WSN)is an emerging technology which find useful in several application areas such as healthcare,environmentalmonitoring,border surveillance,etc.Several issues that exist in the designing of WSN are node localization,coverage,energy efficiency,security,and so on.In spite of the issues,node localization is considered an important issue,which intends to calculate the coordinate points of unknown nodes with the assistance of anchors.The efficiency of the WSN can be considerably influenced by the node localization accuracy.Therefore,this paper presents a modified search and rescue optimization based node localization technique(MSRONLT)forWSN.The major aim of theMSRO-NLT technique is to determine the positioning of the unknown nodes in theWSN.Since the traditional search and rescue optimization(SRO)algorithm suffers from the local optima problemwith an increase in number of iterations,MSRO algorithm is developed by the incorporation of chaotic maps to improvise the diversity of the technique.The application of the concept of chaotic map to the characteristics of the traditional SRO algorithm helps to achieve better exploration ability of the MSRO algorithm.In order to validate the effective node localization performance of the MSRO-NLT algorithm,a set of simulations were performed to highlight the supremacy of the presented model.A detailed comparative results analysis showcased the betterment of the MSRO-NLT technique over the other compared methods in terms of different measures.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups under grant number(RGP.1/282/42)This work is also supported by the Faculty of Computer Science and Information Technology,University of Malaya,under Postgraduate Research Grant(PG035-2016A).
文摘Peer-to-Peer(P2P)electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer.It also decreases the quantity of line loss incurred in Smart Grid(SG).But,uncertainities in demand and supply of the electricity might lead to instability in P2P market for both prosumer and consumer.In recent times,numerous Machine Learning(ML)-enabled load predictive techniques have been developed,while most of the existing studies did not consider its implicit features,optimal parameter selection,and prediction stability.In order to overcome fulfill this research gap,the current research paper presents a new Multi-Objective Grasshopper Optimisation Algorithm(MOGOA)with Deep Extreme Learning Machine(DELM)-based short-term load predictive technique i.e.,MOGOA-DELM model for P2P Energy Trading(ET)in SGs.The proposed MOGOA-DELM model involves four distinct stages of operations namely,data cleaning,Feature Selection(FS),prediction,and parameter optimization.In addition,MOGOA-based FS technique is utilized in the selection of optimum subset of features.Besides,DELM-based predictive model is also applied in forecasting the load requirements.The proposed MOGOA model is also applied in FS and the selection of optimalDELM parameters to improve the predictive outcome.To inspect the effectual outcome of the proposed MOGOA-DELM model,a series of simulations was performed using UK Smart Meter dataset.In the experimentation procedure,the proposed model achieved the highest accuracy of 85.80%and the results established the superiority of the proposed model in predicting the testing data.