Electroless nickel coatings are very popular for their corrosion resistant actions. The present article attempts to study the corrosion behaviour of electroless Ni-B coatings by varying the coating parameters viz. bat...Electroless nickel coatings are very popular for their corrosion resistant actions. The present article attempts to study the corrosion behaviour of electroless Ni-B coatings by varying the coating parameters viz. bath temperature, reducing agent concentration and nickel source concentration together with the annealing temperature. The electrochemical parameters viz., corrosion potential and corrosion current density are evaluated with the help of potentiodynamic polarization experimentation. Taguchi based Grey analysis is employed in order to optimize this multiple response problem and the optimal combination of parameters for maximum corrosion resistance for Ni-B coatings is presented. Moreover, analysis of variance reveals that bath temperature and concentration of nickel source have significant influence on the corrosion performance of the coating. The microstructure characterization of the coating is also conducted with the help of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction analysis. The Ni-B coating in general exhibits a nodular structure and turns crystalline with heat treatment. The corroded surface exhibits cracks and black spots which imply the occurrence of localized corrosion.展开更多
文摘Electroless nickel coatings are very popular for their corrosion resistant actions. The present article attempts to study the corrosion behaviour of electroless Ni-B coatings by varying the coating parameters viz. bath temperature, reducing agent concentration and nickel source concentration together with the annealing temperature. The electrochemical parameters viz., corrosion potential and corrosion current density are evaluated with the help of potentiodynamic polarization experimentation. Taguchi based Grey analysis is employed in order to optimize this multiple response problem and the optimal combination of parameters for maximum corrosion resistance for Ni-B coatings is presented. Moreover, analysis of variance reveals that bath temperature and concentration of nickel source have significant influence on the corrosion performance of the coating. The microstructure characterization of the coating is also conducted with the help of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction analysis. The Ni-B coating in general exhibits a nodular structure and turns crystalline with heat treatment. The corroded surface exhibits cracks and black spots which imply the occurrence of localized corrosion.